Z로 ZIMMER

Multi Channel Power Meter

LMG500

User manual

ZES ZIMMER Electronic Systems GmbH
Tabaksmühlenweg 30
D-61440 Oberursel (Taunus), FRG
phone ++49 (0)6171628750
fax ++49 (0)617152086
e-mail: sales@zes.com

ZES ZIMMER Inc.
phone +1 7605509371
e-mail: usa@zes.com

Internet: http://www.zes.com
No part of this document may be reproduced, in any form or by any means, without the permission in writing from ZES ZIMMER Electronic Systems GmbH.

Regard DIN 34!

We reserve the right to implement technical changes at any time, particularly where these changes will improve the performance of the instrument.

Konformitätserklärung

für das

Mehrkanal-Leistungsmessgerät

Declaration of Conformity

for the

Multi-Channel Power Analyzer

LMG500

Hiermit wird bestätigt, dass das oben aufgeführte Gerät den Anforderungen der Richtlinien 2014/30/EU, 2014/35/EU, 2012/19/EU und 2011/65/EU der Europäischen Union entspricht.

Diese Erklärung gilt für alle Geräte, die nach anhängenden Fertigungsunterlagen - die Bestandteil dieser Erklärung sind - hergestellt werden.

Zur Beurteilung wurden folgende Normen herangezogen:

We certify that the above device accomplishes with all requirements which are defined in the directives 2014/30/EU, 2014/35/EU, 2012/19/EU and 2011/65/EU of the European Union.

This certificate is valid for all devices that are produced according to the appending production instructions (which are a part of this certificate).

For the judgment of compatibility of the product the following standards were used:

EN61000-3-2:2014

EN61000-3-3:2013

> EN55011:2009+A1:2010

EN61326-1:2013

EN61010-1:2010, EN61010-2-030:2010
EN50581:2012

Diese Erklärung wird vom Hersteller This certificate of the manufacturer

ZES ZIMMER Electronic Systems GmbH
Tabaksmühlenweg 30
D-61440 Oberursel

abgegeben durch
is given by

> Dr. Conrad Zimmer, Geschäftsführer

Oberursel, 25. Januar 2017

Manufacturer Declaration

ZES ZIMMER Electronic Systems GmbH certifies herewith that the instrument to which this declaration belongs to is in compliance with all specifications contained in the delivered user manual. It has left the factory in mechanically and electrically safe condition.

The measuring instruments, tools and standards used in production, adjustment and calibration are calibrated according to ISO9000 (traceable to national standards) and correspond to the standard of precision required to maintain the specified accuracies.

Tabaksmühlenweg 30
D-61440 Oberursel
Germany
Instrument:
O LMG90
O LMG450
O LMG95
O LMG310
O other:

Serial number:
For the above instrument the following should be done:

O Calibration (order-no KR-xxx)	O Adjustment with following calibration (order-no JKR-xxx)	O Input calibration, adjustment and output calibration (order-no KJKR-xxx)
O I don't want to get the latest software in the instrument (free of charge). I want to keep the actual implemented software version.		

Note:
Calibration is only to proof the differences between the instrument and the 'true' values
Adjustment is to set-up an instrument to meet its specifications.

Company :
Street :
ZIP/City :
Country :
Email :

Name (responsible for
calibration) :
Phone :
Fax :
Department :
Customer number (if available):
Date:
Sign:
Please send this paper via post or fax to:
Z E S ZIMMER Electronic Systems GmbH
Tel. +49 (0)6171/628750
Tabaksmühlenweg 30
Fax +49 (0)6171/52086
D-61440 Oberursel
Email sales@zes.com
Germany

Table of contents

1 Instructions and Warnings 19
1.1 Safety Instructions 19
2 General 27
2.1 Features and application areas 27
2.2 Usage of the manual. 28
2.3 General handling of the instrument 29
2.4 The group concept 31
2.5 Linked values, star to delta conversion (option L50-O6) 37
2.6 More than 4 power measuring channels 41
3 Installation 49
3.1 Unpacking and putting into operation 49
3.2 General set-up 49
3.3 Connections of the LMG500 49
3.3.1 Measuring circuit for typical line applications using the internal current path 50
3.3.2 Measuring circuit for measuring efficiency of $3 / 1$ phase systems 51
3.3.3 Measuring circuit (typical) for star to delta conversion (option L50-O6) 52
3.3.4 Aron wiring 53
3.3.5 Measuring circuit for measuring efficiency of $3 / 3$ phase systems 54
3.3.6 Measuring circuit using an external current sensor 54
3.3.7 Measurements at middle and high voltage systems 55
3.3.8 Measurements at middle and high voltage systems without N 56
3.3.9 Measurements at middle and high voltage systems without N 57
3.4 Coupling of two LMG500 (L50-Z13) for a 8 channel instrument 57
4 Instrument controls 59
4.1 Front panel 59
4.2 Rear panel 60
4.3 Display 63
4.3.1 Status line 63
4.4 General menues 64
4.4.1 Misc. 64
4.4.2 IF/IO 65
4.4.3 Custom menu 71
4.4.4 Script/Formula editor 73
4.4.5 Saving and restoring configurations 83
4.5 Entering identifiers, characters and text 83
4.6 Entering numerical values 88
5 Normal measuring mode 89
5.1 Measuring configuration (Measuring) 89
5.1.1 Globals tab 89
5.1.2 Group A/B/C/D tab 90
5.1.3 Ev. AB/CD tab (option L50-O5) 91
5.2 Measuring ranges (Range) 92
5.2.1 Group A/B tab 93
5.2.2 Sense/More tab 94
5.2.3 Delay 94
5.3 Definition of measuring values 95
5.3.1 More than 4 power measuring channels 100
5.3.2 Values from single measuring 104
5.3.3 Integrated values 105
5.3.4 Total values 106
5.4 Display of values 107
5.4.1 Default 109
5.4.2 Voltage 109
5.4.3 Current 109
5.4.4 Power 110
5.4.5 Energy 110
5.4.6 Graphical display 111
5.4.7 Custom menu. 116
5.5 Storage of values 116
6 CE-Harmonic measuring mode (option L50-O9) 117
6.1 Measuring configuration (Measuring) 117
6.1.1 Global tab 117
6.1.2 Group A/B tab 118
6.2 Measuring ranges (Range) 119
6.3 Definition of measuring values 119
6.4 Display of values 120
6.4.1 Default 121
6.4.2 Voltage 121
6.4.3 Current 121
6.4.4 Power 122
6.4.5 Long time evaluation 122
6.4.6 Graphical display 123
6.4.7 Custom menu 125
6.5 Storage of values 125
6.6 Compliance tests according EN61000-3-2 125
7 CE-Flicker measuring mode (option L50-O4) 127
7.1 Measuring configuration (Measuring) 127
7.1.1 Globals tab 127
7.1.2 Ztest/Zref tab 128
7.2 Measuring ranges (Range) 128
7.3 Definition of measuring values 128
7.4 Display of values 129
7.4.1 Default 129
7.4.2 Voltage 130
7.4.3 Current 130
7.4.4 Power 130
7.4.5 Flicker (Int. Val) 130
7.4.6 Graphical display 131
7.4.7 Custom menu. 131
7.5 Storage of values 131
7.6 Tests according EN61000-3-3 131
8100 Harmonics measuring mode (option L50-O8) 133
8.1 Measuring configuration (Measuring) 133
8.2 Measuring ranges (Range) 134
8.3 Definition of measuring values 134
8.4 Display of values 136
8.4.1 Default 136
8.4.2 Voltage 137
8.4.3 Current 137
8.4.4 Power 137
8.4.5 Graphical display 138
8.4.6 Custom menu 138
8.5 Storage of values 138
9 Interfaces (IEEE option L50-O1) 139
9.1 Short syntax description 139
9.2 Commands 141
9.2.1 IEEE488.2 common commands 141
9.2.2 :CALCulate commands 145
9.2.3 :DISPlay commands 150
9.2 .4 :FETCh and :READ commands 150
9.2.5 :FORMat commands 188
9.2.6 :INITiate commands 189
9.2.7 :INPut commands 191
9.2.8 :INSTrument commands 191
9.2.9 :MEMory commands 192
9.2.10 :SENSe commands 193
9.2.11 :SOURce commands 215
9.2.12 :STATus commands 217
9.2.13 :SYSTem commands 220
9.2.14 :TRIGger commands. 227
9.2.15 Special commands 232
9.2.16 Example 1 232
9.2.17 Example 2 233
9.2.18 Testing the interface using a terminal program 234
9.2.19 SCPI command Example. 234
9.2.20 SHORT command Example 236
9.3 Physical devices 238
9.3.1 The serial interfaces 238
9.3.2 IEEE488.2 239
9.3.3 Parallel Port 240
10 Logging of values to drives, printer and interfaces 241
10.1 Start of logging 241
10.2 End of logging 242
10.3 Logging profiles (output devices) 242
10.3.1 Output intervals 243
10.4 Output formats 244
10.5 Remarks, header lines 245
10.6 Storage media 246
10.6.1 Floppy disk drive 246
10.6.2 USB memory stick 246
10.7 Import of data into PC programs 247
10.7.1 Data exchange via storage media 247
10.7.2 Data exchange via serial interface 247
10.7.3 Country dependent numbers 247
10.7.4 Reading data into EXCEL 248
10.8 Error messages 248
11 Miscellaneous 249
11.1 Frequently asked questions 249
11.1.1 Uncertainty of measured and computed values 249
11.1.2 Uncertainty of non sinusoidal signals 251
11.1.3 Hints for setting up the record rate of the scope 252
11.2 Function fault 257
11.3 Maintenance 262
11.3.1 Calibration 262
11.3.2 Adjustment 263
11.3.3 Zero adjustment of the instrument 263
11.3.4 Battery 263
11.3.5 Software update 264
11.4 Use with an inverter 264
12 Technical data 265
12.1 General 265
12.2 Display of values 266
12.3 Measuring channels 266
12.3.1 Sampling 266
12.3.2 Ranges 267
12.3.3 Uncertainty 268
12.3.4 Common mode rejection 270
12.4 ZES sensors 270
12.4.1 Several external sensors in a test bench 271
12.5 Filter 271
12.5.1 10 kHz filter 271
12.6 CE Harmonics 272
12.7 CE Flicker 272
12.8 HARM100 Mode 273
12.9 Processing signal interface (option L50-O3) 273
12.9.1 Analogue inputs 275
12.9.2 Analogue outputs 275
12.9.3 Digital outputs A 275
12.9.4 Digital outputs B 275
12.9.5 Digital inputs A. 276
12.9.6 Digital inputs B 276
12.9.7 Frequency input A with sensor supply 276
12.9.8 Frequency input B with sensor supply 276
12.9.9 Sensor supply 277
12.9.10 Frequency/direction input 277
12.10 Timebase 278
12.11 Frequency measuring 278
12.12 Scope memory 278
13 System design 279
13.1 Further connectors 279
13.1.1 External Synchronisation (Sync.) 279
13.2 Functional block diagram LMG500 283
13.3 Functional block diagram voltage channels 283
13.4 Functional block diagram current channels 284
13.5 Functional block diagram computing unit 284
13.6 Functional block diagram processing signal interface 285
14 Glossary 287
15 Common Index 299
16 Interface command index 318
List of figures
Figure 1: Measuring menu 29
Figure 2: Allocations of the different linked values 37
Figure 3: Measuring circuit 3 phase system with neutral 50
Figure 4: Measuring circuit for measuring efficiency (3/1phase) 51
Figure 5: Star to delta conversion 52
Figure 6: Measuring circuit with current and voltage transformers in Aron wiring 53
Figure 7: Measuring circuit for measuring efficiency (3/3phase) 54
Figure 8: Measuring circuit with external current sensor 54
Figure 9: Measuring circuit for measuring in middle and high voltage systems 55
Figure 10: Measuring circuit for measuring in middle and high voltage sytems without N Usingartificial midpoint56
Figure 11: Measuring circuit for measuring in middle and high voltage sytems without N Usingstar to delta conversion57
Figure 12: Front panel of the instrument 59
Figure 13: Rear panel of the instrument 60
Figure 14: Status line 63
Figure 15: Misc. menu 64
Figure 16: Interface Setup 66
Figure 17: Analogue inputs 68
Figure 18: Analogue outputs 69
Figure 19: Digital inputs 70
Figure 20: Limit menu 71
Figure 21: Script editor 73
Figure 22: Measuring menu in normal mode. 91
Figure 23: Measuring menu, transient settings 91
Figure 24: Range menu 93
Figure 25: Delay menu 94
Figure 26: Allocation of the different linked values 97
Figure 27: Default display with one and four channels 109
Figure 28: Scope display with split off/on 113
Figure 29: The plot display; split off 113
Figure 30: The plot display; split on 115
Figure 31: Vector (Fresnel) diagramm 116
Figure 32: Measuring menu in CE-Harm mode 118
Figure 33: Display of voltages in CE-Harm-Harm mode 121
Figure 34: Long time evaluation of harmonics 123
Figure 35: Graphical display of harmonics 124
Figure 36: Measuring menu in CE-Flicker mode 128
Figure 37: Evaluation of flicker measurement. 130
Figure 38: Measuring menu in Harm100 mode 134
Figure 39: Keynumbers 225
Figure 40: ComA connector 239
Figure 41: ComB connector 239
Figure 42: Dimensions of LMG500 266
Figure 43: L50-Z14 adaptor. 271
Figure 44: Processing Signal Interface Connector A and B 274
Figure 45: Sync. connector 279
Figure 46: Functional block diagram LMG500 283
Figure 47: Functional block diagram voltage channels 283
Figure 48: Functional block diagram current channels 284
Figure 49: Functional block diagram computing unit 284
Figure 50: Functional block diagram processing signal interface 285

1 Instructions and Warnings

1.1 Safety Instructions

This instrument conforms to the EN61010-1 guide lines concerning the protection of electrical instrumentation and has left the factory in a mechanically and electrically safe condition. To maintain safe operation, the user must follow the instructions and warnings contained in this manual. The instrument satisfies the requirements of protection class I (protective earthing). Accessible metal parts of the instrument are tested with respect to the mains connection using a potential of $1500 \mathrm{~V} / 50 \mathrm{~Hz}$. Before connecting the apparatus to the mains supply, ensure that the voltage displayed on the type plate equals the available mains supply voltage. A possibly installed power supply selector has to be set up. The mains plug must only be connected to an earthed mains outlet. The earth connection must not be discontinued or broken by using an extension lead without earth connection. The instrument must be connected to the mains supply before any measurement or control circuits are connected to it. Any disconnection of the earth lead inside or outside of the instrument will endanger the operating personal. Deliberate disconnection of the earth is not permitted. When the instrument is used in combination with other instruments, then proceed as follows:

The external earth connector on the back of the instrument must not be used to earth other electrical equipment. It is only intended to provide additional earthing of the instrument in case an error occurs in the circuit under test which may cause an earth current to flow in excess of 10 A which cannot be carried by the mains supply cable. If this further earthing cannot be implemented, then the measuring circuit must be suitably fused prior to its connection to the instrument. In this case, it is necessary to connect the measuring instrument to an earth connection point via the earth connector using a conductor with sufficient cross section. If this is not possible, the instrument has to be connected to the circuit to be tested via adequate fuses. The measuring inputs are isolated to case for operating voltages up to 1000 V according to protection class I.

By opening the instrument components are exposed which may be raised to a hazardous potential. All voltage sources must be disconnected from the instrument before any instrument covers are removed for the purpose of calibration, service, repair or changing components. When access is required for calibration, service or repair, only suitably qualified personnel are permitted access to an opened and energised instrument.

Fuses may only be replaced with the same ratings and the same types. The use of repaired or short circuited fuses is not permitted. The instrument should be disconnected and disabled from accidental use when it is suspected that its safe operation cannot be warranted. The required
repair work must then be carried out by a suitably qualified person who is familiar with any dangers involved.

It must be considered unsafe to operate the instrument:

- if there is visual evidence of physical damage
- if the instrument fails to operate correctly
- after long-term storage under unfavourable circumstances
- if there are condensation forms due to excessive temperature changes
- following rough transport conditions

If the instrument was opened, a high voltage test according to the technical data and a test of the protective conductor are necessary following the closing of the instrument.

Storage temperature range: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Climatic class: KYG according to DIN 40040
$0^{\circ} \mathrm{C} . .40^{\circ} \mathrm{C}$, humidity max. 85%, annual average 65%, no dewing

General

\1 Warning! Opening the instrument exposes components which contain high voltage. This is only permitted by trained personnel. User risks injury by removing cover and may void any manufacturer 's warranty. All voltage sources must be disconnected from the instrument before any instruments covers are removed. Only suitably qualified personnel are permitted such access for the purpose of calibration, service, repair or changing of components.

If the instrument has been opened, a routine test according to EN61010-1 (test of the protective conductor and voltage test) are necessary following the closing of the instrument for safety purposes prior to use.

Warning! Fuses may only be replaced with the correctly rated and required types as written in this manual. The use of repaired, short-circuited or incorrect fuses is not permitted.

Warning! The environmental conditions must be observed to ensure safe operation of the instrument.

Use in any type of wet or explosive environment or in presence of flammable gases or liquids is especially prohibited.

Warning! The instrument and accessories (such as wires and clips)must be checked
before each use. Defective parts must be replaced.

\dagger
Warning! Ventilation openings must be kept clear to guarantee the required air flow and to prevent overheating of the instrument. In the same way, the air filter at the air inlets must be clean to permit suficient air flow. Do not operate the instrument without air filter or the filter holder as injury may result.

When mounting the instrument into a rack, make sure that the slide rails do not cover any ventilation openings.

Warning! The instrument must not be used in a medical environment nor in any other environment that may have a potential effect on life or health.

Warning! Impacts or rough handling may damage the instrument. Do not place heavy objects on the instrument.

Warning! If the weight of the instrument is too heavy to be carried by one person, carry the instrument with two persons and/or use a appropriate tool. In all cases, use the handles and grips of the instrument to lift and carry it safely.

Warning! The instrument is not designed to detect hazards or something similar! A wrong reading (e.g.by choosing a wrong filter or range) could give you the wrong impression of a safe state. Use only tools which were designed for this purpose (e.g. a voltage detector) instead of this instrument to detect dangerous situations.

Warning!
Be careful when connecting external equipment like an external keyboard or mouse to the instrument. They might not be designed to operate in the same EMC environment as the instrument and therefore they could be disturbed. This could lead to unwanted operation of the instrument like changing ranges or something similar.

Warning!
When connecting the instrument watch the order of connections: First connect it to the protective conductor and the power supply, then connect it to the measurement circuit. Then switch on the instrument, and finally, after double checking the wiring, switch on the measurement circuit.

Connection to power supply and protective conductor

\triangle

 Attention! Before connecting the mains cable to the power supply, confirm that the mains supply voltage corresponds to the voltage printed on the model 's identification plate. If a voltage selector switch exists, it must be set appropriately. A suitable power source has to be used to operate the instrument.Warning! The mains plug may only be inserted into a mains power supply socket with protective earth contact. This protection must not be disabled by the usage of plugs, cables or extension cords without protective earth.

The mains plug must be inserted into a mains socket with protective conductor before any other connections are made to the instrument. Any kind of interruption of the protective conductor, inside or outside the instrument, or disconnecting the protective conductor can result in an unsafe condition of the instrument and is not allowed. The usage of cables, plugs, sockets or adapters with only two poles, prongs or connectors is not allowed.

The additional protective conductor terminal of the instrument chassis (green/yellow safety jack on the back of the instrument) must be used for the case where an earth current in excess of 10 A might result accidentally from the circuit under test.

Such currents are too large for the earthing connection of the instrument supply cord. In case of a single fault, the protective conductor might not be able to carry this current. If it would be interrupted, the case would no longer be protected against electric shock!

In this case, connect the additional protective conductor terminal with an adequately rated cable to a suitable earthing point. The additional protective conductor terminal is limited to currents up to 32 A .

If reliable earthing cannot be realized, the connections between the circuit under test and the instrument must be fused appropriately.

The earth terminal on the instrument must not be used as the only earth connection for the instrument nor must the circuit under test nor any other instrument be earthed by this terminal.

Connection to measurement circuit

\triangle

 Attention! Remove all energy source from the measurement circuit before making any connections between this circuit and the analyzer. Do not plug or disconnect any cables when they contain or carry voltage relative to earth.Attention!
Use only measurement cables with safety connectors and suficient cross section. Be sure that the cables have a suficient voltage rating and are usable for the desired overvoltage and measurement category.

Cables not having safety but standard connectors might have insuficient clearance and creepage distances, even if they are plugged into the socket. So there is always a risk of a electric shock.

Use only colored cables which match to the color of the jack to help prevent a wrong connection.

When connecting the measurement circuit, take special care not to connect the voltage wires to the current input of the instrument. When switching the measurement circuit on, this would result in a short circuit which risks damage to the analyzer and to the user!

Such short circuits can be very dangerous, as currents of several thousand ampere might flow during the short circuit!

To prevent this use only cables with suitable fuses as the ones delivered together with the instrument for the connection of the voltage measurement circuit to the instrument.

The fuses in the voltage measurement cables will interrupt the current flow for the case that these cables are accidentally inserted into the low ohmic current measurement jacks. By this short circuiting of a source with high short circuit power and/or measurement category (e.g.the output of a energy distribution transformer) will not cause any hazard.

The yellow and black voltage cables have each an implemented fuse. Before and after each measurement: Check the fuse! To replace this fuse, remove the cable on both sides from all circuits to make it free of dangerous voltages. Unscrew the fuse holder. Replace the fuse only with following type:
$6.3 \times 32 \mathrm{~mm}$, FF $500 \mathrm{~mA}, 1000 \mathrm{~V}$ AC+DC, 30kA breaking capacity

Screw the fuse holder together again.

Attention! When connecting to a source with high short circuit power and/or measurement category (e.g.the output of a energy distribution transformer), massive damage could occur when mismatching cables, short-circuiting the measurement circuit, or using the current jacks of the instrument instead of the voltage jacks and similar. So it is recommended to use appropriate fuses in all (also the current) measurement cables. When selecting a fuse, ensure that at least the following properties are met:

- The usual measuring current must flow without interruption (rated current of the fuse)
- The short circuit current of the measurement circuit must be interrupted safely (breaking capacity of the fuse)
- The maximum voltage of the measurement circuit must be interrupted safely (rated voltage of the fuse)
- The fuse must be suitable for the type of current:AC, DC or both (breaking capacity of the fuse)
- The fuse must be fast enough to protect the cables and the instrument

Attention! The maximum voltages between the jacks U and $U *$ may not exceed the technical specifications.

Attention! The maximum currents at the jacks I and I^{*} as well as the maximum voltage between the jacks \mathbf{I} and $\mathbf{I}_{\text {sensor }}$ may not exceed the technical specifications.

Attention! The maximum voltages of the jacks U, U*, I, I*, and $I_{\text {sensor }}$ against earth may not exceed the technical specifications

Attention! The maximum voltages of the jacks U, U* against I, I* and $I_{\text {sensor }}$ may not exceed the technical specifications

Attention! External current sensors or transformers with 1 A or 5 A secondary current must be connected to the jacks I and I* only. External devices with higher secondary currents are not allowed, because they could overload the measurement channel and interrupt the current! Also fuses are not allowed in the measurement cables.

Before using these jacks, test if they have a low impedance current path to prevent high voltages at the output of the external device.

In general, it is dangerous to interrupt the secondary side of a current transformer as there might appear very high voltages which could lead to electric shock.

For transformers with 1 A or 5 A secondary current, the jacks I and I * can carry sufficient overload current and will not be interrupted by usual overload.

Attention! Cables from/to external sensors are usually designed to operate with low voltages ($<10 \mathrm{~V}$). When using these in an environment with a high voltage circuit, use caution as further isolation might be necessary. For the operation itself the isolation is sufficient, but if these cables touch a bare conductor with dangerous voltages this can cause an unsafe condition! In such cases, further isolation might be necessary.

For example, the secondary cables of a current clamp have a very low voltage, but they could touch the current bar which has a dangerous voltage against earth.

Attention! Especially when establishing external connections, special care must be taken to prevent electrostatic discharge.

Attention! Different sensors might require different connection cables to the instrument. When changing a sensor, please ensure that a correct cable is used. Usually the cable is dedicated to a sensor.

Attention! Keep away from energized measurement circuits to prevent electric shock. When performing measurements on installations or circuits, please observe all safety regulations and guidelines. In particular, only suitable measurement accessories should be used. Only suitably qualified personnel are permitted to work with energized measurement circuits.

Attention! When you put the instrument out of operation, all external cables shall be removed. Special care has to be taken when disconnecting current sensors and current transformers. Before interrupting their secondary current, the primary current has to be switched off. After disconnecting, the secondary side, the current sensors or current transformer has to be short-circuited to prevent dangerous voltages.

2 General

The Multi Channel Power Meter LMG500 extends the ZES multimeter product range for power measurement. It benefits from experience and know-how gained from the successful ZES LMG310, LMG95 and LMG450 series.

Due to the high sampling rate which is used in this instrument, it is now possible to make accurate power and efficiency measurements in 1 to 8 phase system configurations with a variety of load and signal components containing frequencies in the precision range from DC to 10 MHz .

Monitoring and storing transients, harmonic analysis as well as time domain views of signals' waveform on the graphical display (oscilloscope mode) are all available with this instrument.

A special feature of the instrument is the simple, direct and intuitive topology of the operating buttons. The display of different quantities and menus for setting up the instrument is normally achieved with only a single touch of one button.

2.1 Features and application areas

Voltages and currents can be measured over a wide dynamic range. This makes the LMG500 instrument suitable for almost all professional measurement applications such as converter-fed alternating current machines and power- and energy electronic applications. Various wire- and phase configurations can be pre-selected to suit any required user application.

Another feature of the instrument is to suppress high frequency harmonics by means of selectable filters. This makes it possible to take only the fundamental harmonics into account, which build the torque and the mechanical power at the motor output.

Due to the exceptionally good common mode rejection of each current/voltage input channel it is possible to measure currents and voltages which float up to 1000 V and at high frequencies with respect to earth. This is particularly important for measurements in inverter- and rectifier circuitry and in switched mode power supply applications.

The harmonics measuring mode (standard in the base instrument) permits the compliance measurement of high frequency harmonic reflections in networks according to EN61000-3-2 standard.

The extended harmonic mode up to the $99^{\text {th }}$ available as option provides to obtain the energy distribution over different frequency ranges and can thus investigate their relative contribution to the total consumption of energy.

The LMG500 is suitable for measurements in electromagnetically noisy environments to EN61000-4. This feature is of particular importance for measurements in power electronics.

Other applications include the measurement of reactive and non-linear component losses (such as in transformers, chokes, motors, capacitors, power supplies), the computation of the efficiencies of photovoltaic modules and other alternative energy components. Further on you can calculate energy and charge, e.g. of accumulators.

A further highlight are the special ZES ZIMMER current clamps. This unique accessories combine both, the easy usage of clamp-on current transformers with the low uncertainty of fix installed current transformers with primary winding for small currents from 0.1A to 80A. They are compensated for very small uncertainties for amplitude and phase over frequency. So they can be used in power measurement in a wide current and frequency range. With them you can measure with power accuracies up to 0.3% in the frequency range 5 Hz to 20 kHz . So it is possible to measure the output of a PWM inverter without interrupting the wires.

2.2 Usage of the manual

The LMG500 is operated either by pressing buttons with hard-wired functions (in the following characterised by italic style), or by using softkeys (bold style) which will perform tasks that depend on a particular menu choice. This approach makes it possible to call all functions using a limited number of buttons without a need to call double or triple functions with one button. There are no menu trees so that the user does not need to fight his way through a menu jungle in order to call a particular display. Each menu can be called by simply pressing a single button.

The upper 6 buttons of the numerical keypad (Default, Current, Voltage, Power, Int. Value and Graph) enable the display of the standard measuring values by simply pressing a single button. In this menu a specified selection of the respective measuring values can be displayed using the soft keys.

The menus for the parameter set-up is called via the lower 6 buttons of the numerical keypad (Measuring, Int. Time, Custom, Range, Misc., IF/IO,). Thereby, all the instrument parameters can be adjusted using the soft keys.

Despite the simple and intuitive operation of the controls, it is recommended that even experienced users should carefully read and work through this manual to eliminate operational mistakes and to explore the full capability of the instrument.

There are following measuring modes:

- normal mode

In this mode the LMG500 works as a power-meter with integrated scope function. The

TRMS values of voltage and current, the power and derived values are measured via the power measuring channels.

- CE harmonics mode

In this mode the LMG500 works as an harmonic analyser. All measurements are judged according to the standards. There is only a minimum of settings to prevent set-up errors.

- CE flicker mode

In this mode the LMG500 works as a full compliance flicker meter. All measurements are judged according to the standards. There is only a minimum of settings to prevent set-up errors.

- Harm100 mode

In this mode the LMG500 works as an harmonic analyser for 100 harmonic components. You get many values like phase angles and the power at each frequency.

The active mode depends on the setting in the Measuring menu. Some other menus also depend on this setting (see the respective description).

For each measuring mode you find a chapter in the manual. Inside this chapter the different menus for this operating mode are described.

Figure 1: Measuring menu

2.3 General handling of the instrument

The main menus are reached by pressing the corresponding key of the keypad. In many menus you find softkeys which change their function depending on the menu. Above the softkey list you have symbols for the actual behaviour of the rotary knob:
blank The rotary knob is inactive (neither rotating nor pushing has any effects)

By rotating the knob, you can select different tabs. By pushing the knob, you get a new selection of softkeys in a lower menu layer.

苍

By rotating the knob, you can select different actions (depends on the context of the menu). By pushing the knob, you go back one menu to the upper menu layer.

You are entering a text. The effect of the rotating depends on the softkey settings. By pushing the knob, the character at the cursor position of the selection list is copied to the input field. See also '4.5, Entering identifiers, characters and text'

All softkeys are of following types. They are identified by the small symbol in the upper left corner. The text in the softkeys depends on the context of the menu.
${ }^{4}$ Reset
Execution softkey. The action described by the text is executed immediately without the possibility to cancel it.

BMode

Norm.
Branch softkey. After pressing this softkey a new list of softkeys will appear. Now you can select one of this new softkeys or you can cancel the action be pressing ESC.

$\nabla_{\text {Filt }}$

List softkey. After pressing this softkey you get a selection list. You can choose one element of the list (with the rotary knob) and then you can confirm your choice by pressing the rotary knob or ENTER or you can cancel the selection by pressing ESC.

TEdit
Text edit softkey. After pressing this softkey you can enter identifiers (for example in the script editor or to output values via the analogue outputs). This kind of text input is described in ' 4.5 , Entering identifiers, characters and text'

Rotary knob action softkey. This is a group of one or more softkeys. The softkey with the knob symbol is the actual active (in this case the knob would move the window). All inactive softkeys have no symbol in the upper left corner. If you in this example press on Zoom the symbol will change to this softkey.

If you have a small box like the '-x-' in the above Zoom button, the text in this box represents the actual setting. In the above example you would zoom the signal in X direction. If you press again this button, the content of the small box changes to ' -y -' and you would zoom the signal in Y direction.

-

Count softkey. After pressing this softkey you can adjust the depending values with the opening up and down buttons in fixed steps.

${ }^{9}$ Start

Time
Time softkey. After pressing this softkey you can adjust a time setting. The values for hours, minutes and seconds must be separated by a colon, pressing the button Misc. Then you can confirm your adjustments by pressing the rotary knob or ENTER or you can cancel the selection by pressing ESC.

(1) Start

Date
Date softkey. After pressing this softkey you adjust a date. The values for day, month and year must be separated by a colon, pressing the button Misc. Then you can confirm your adjustments by pressing the rotary knob or ENTER or you can cancel the selection by pressing ESC.

ODIR

Time duration softkey. After pressing this softkey you can adjust a time duration, in which e.g. an integration of values should be made. You can set up the duration in several data formats e.g. in seconds without a hyphen or by values for hours, minutes and seconds separated by a colon (pressing the button Misc.). Confirm your choice by pressing the rotary knob or ENTER or you can cancel the selection by pressing ESC.

Digit softkey. After pressing this softkey you must enter numbers. Then you can confirm your choice by pressing the rotary knob or ENTER or you can cancel the selection by pressing $E S C$.

2.4 The group concept

The power measuring channels of each unit allow a lot of measuring capabilities, but they require also a special handling. For this reason we have used so called 'groups'. In one group you find one or more measuring channels which belong logically together. A group is a logical unit and there are several menus which display values out of one group or which set-up parameters for one group (e.g. ranges). The groups are defined by the selected wiring (see the chapters about the measuring menu). There are maximum 2 groups in each instrument. If two LMG500 are combined, up to two groups per instrument can occur.

For example with 4 measuring channels you can have three principle measuring situations:

- You measure with all channels (group A) at the same system (which means you have the same frequency at each input). Examples for such systems are 4 phase motors driven by frequency converters or standard main supply with L1, L2, L3, N and PE (in this case you could for example measure I_{N} and $\mathrm{U}_{\mathrm{NPE}}!$)
In this situation there is no group B!
The standard wiring for this is ' $4+0$ channels'.
- You measure with the first channels (group A) at one system and with the last channel (group B) at another system. Examples for such systems are standard 3 phase systems with one phase output, motor applications at frequency converters where the torque is measured with the $4^{\text {th }}$ channel or car applications, where the $4^{\text {th }}$ channel measures the DC power of the battery.
The standard wiring for this is ' $3+1$ channels'.
If you have installed the option star to delta conversion, (L50-O6) you have three further possible wirings:
${ }^{\prime} 3+1, \mathrm{U}^{*} \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta$ '
${ }^{\prime} 3+1, \mathrm{U} \Delta \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta$ '
${ }^{\prime} 3+1, \mathrm{U} \Delta \mathrm{I}^{*}->\mathrm{U}^{*}{ }^{*}$ '
- You measure with 2 channels (group A) at one system and with the other two channels (group B) at the second system. Examples for this could be three phase converter from 50 Hz to 60 Hz .
Both groups are measured in 2 wattmeter method. There are two possible applications: You measure a 3phase, 3wire system (aron circuit, Aron set to on)
You measure a 2 phase, 3 wire system.(Aron set to off).
The standard wiring for this is ' $2+2$ channels'.
If a group has more than one measuring channel, you can get additional information about the group:
- In many cases the instantaneous values of all used measuring channels are calculated together. By this you can see for example the not measured voltages and currents in wiring 'A:1+2 B:3+4' (aron circuit).
This virtual channel can be used like a standard channel (you get all values, scope, harmonics, flicker, ...)
This kind of channels we call 'linked channels’
- The total values of a group are calculated (total active power, total power factor, total energy, ...).
This kind of channels we call 'sum channels'.

Following you find an overview over the different wirings, the groups, the measured values and where you can find the values in the display. The definition of the header can be found in chapter 5.4, 'Display of values'.

Wiring ' $1+0$ Channels' (1 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel	Chn1 A:1

Wiring '2+0 Channels' ($\mathbf{2}$ channel instruments only)

Display channel	Group	Meaning	Header with Aron set to off
1	A	The values measured with the first measuring channel	Chn1 (U12, I1) A:1
2	A	The values measured with the second measuring channel	Chn2 (32, I3) A:2
9	A	The calculated (not measured) current I_{3} and voltage U_{12} of group A (linked channel)	Link12 (U31, I2) A:9
15	A	The total values (sum channel) of group A (display channel 1 to 2)	Sum(1-2) A:15

Wiring '2+0 Channels' (2 channel instruments only)

Display channel	Group	Meaning	Header with Aron set to on
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
9	A	The calculated (not measured) current I_{3} and voltage U_{12} of group A (linked channel)	Link12 (U3,I3) A:9
15	A	The total values (sum channel) of group A (display channel 1 to 2)	Sum(1-2) A:15

Wiring '1+1 Channels' ($\mathbf{2}$ channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel	Chn1 A:1
2	B	The values measured with the second measuring channel	Chn2 B:2

Wiring '3+0 Channels' (3 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	A	The values measured with the third measuring channel	Chn3 A:3
15	A	The total values (sum channel) of group A (display channel 1 to 3)	Sum(1-3) A:15

Wiring '2+1 Channels' (3 channel instruments only)

Display channel	Group	Meaning	Header with Aron set to off
1	A	The values measured with the first measuring channel	Chn1 (U12, I1) A:1
2	A	The values measured with the second measuring channel	Chn2 (U32, I3) A:2
3	B	The values measured with the third measuring channel	Chn3 B:3
9	A	The calculated (not measured) current I_{3} and voltage U12 of group A (linked channel)	Link12 (U31, I2) A:9
15	A	The total values (sum channel) of group A (display channel 1 to 2$)$	Sum(1-2) A:15

Wiring '2+1 Channels' ($\mathbf{3}$ channel instruments only)

Display channel	Group	Meaning	Header with Aron set to on
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	B	The values measured with the third measuring channel	Chn3 B:3
9	A	The calculated (not measured) current I_{3} and voltage U_{12} of group A (linked channel)	Link12 (U3,I3) A:9
15	A	The total values (sum channel) of group A (display channel 1 to 2)	Sum(1-2) A:15

Wiring '4+0 Channels' (4 channel instruments only)

Display channel	Group	Meaning	Header

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	A	The values measured with the third measuring channel	Chn3 A:3
4	A	The values measured with the fourth measuring channel	Chn4 A:4
15	A	The total values (sum channel) of group A (display channel 1 to 4$)$	Sum(1-4) A:15

For typical measuring circuit see 3.3.1, 'Measuring circuit for typical line applications using the internal current path'.

Wiring '3+1 Channels' (4 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	A	The values measured with the third measuring channel	Chn3 A:3
4	B	The values measured with the fourth measuring channel	Chn4 B:4
15	A	The total values (sum channel) of group A (display channel 1 to 3)	Sum(1-3) A:15

For typical measuring circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'.

Wiring ' $2+2$ Channels' ($\mathbf{4}$ channel instruments only)

Display channel	Group	Meaning	Header with Aron set to off
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	B	The values measured with the third measuring channel	Chn3 B:3
4	B	The values measured with the fourth measuring channel	Chn4 B:4
9	A	The calculated (not measured) current I_{3} and voltage U_{12} of group A (linked channel)	Link12 (U3,I3) A:9

Display channel	Group	Meaning	Header with Aron set to off
10	B	The calculated (not measured) current I_{3} and voltage U $_{12}$ of group B (linked channel)	Link34 (U3,I3) B:10
15	A	The total values (sum channel) of group A (display channel 1 to 2)	Sum(1-2) A:15
16	B	The total values (sum channel) of group B (display channel 3 to 4)	Sum(3-4) B:16

For typical measuring circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems' if you replace ' L 2 ' by ' N '.

Wiring ' $2+2$ Channels' (4 channel instruments only)

Display channel	Group	Meaning	Header with Aron set to on
1	A	The values measured with the first measuring channel	Chn1 (U12,I1) A:1
2	A	The values measured with the second measuring channel	Chn2 (U32,I3) A:2
3	B	The values measured with the third measuring channel	Chn3 (U12,I1) B:3
4	B	The values measured with the fourth measuring channel	Chn4 (U32,I3) B:4
9	A	The calculated (not measured) current I_{2} and voltage U_{31} of group A (linked channel)	Link12 (U31,I2) A:9
10	B	The calculated (not measured) current I_{2} and voltage U_{31} of group B (linked channel)	Link34 (U31,I2) B:10
15	A	The total values (sum channel) of group A (display channel 1 to 2)	Sum(1-2) A:15
16	B	The total values (sum channel) of group B (display channel 3 to 4)	Sum(3-4) B:16

For typical measuring circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems'.

For further information about this tables see also chapter 5.3, 'Definition of measuring values'.
So a general rule what you see is:
All measuring channels
All channels calculated from sample values (linked channels)
All channels calculating the total values of a group (sum channels)

2.5 Linked values, star to delta conversion (option L50-06)

If you have installed the option star to delta conversion you can calculate values, which you can't measure directly (for example if you have a load in delta circuit, and want to know, how big is the power in each load, you could use the wiring ' $3+1$, $\mathrm{U} \Delta \mathrm{I}$ *-> $\mathrm{U} \Delta \mathrm{I} \Delta$ '. Then you would measure the current in the three phases and the voltages between the phases. As linked values you get the voltage, current, power and all other values of each load, refer the following figure).

Figure 2: Allocations of the different linked values

Important note!

You can only perform a star to delta conversion, if this is physically possible. For the calculation we assume following conditions:

- $u 1+u 2+u 3=0$
- u12+u23+u31 = 0
- $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3=0$
- $\mathrm{i} 12+\mathrm{i} 23+\mathrm{i} 31=0$

This assumption may not be met in following examples:

- You have a load in star circuit and there is a current flow out of the midpoint. So you can't transform this circuit to a equivalent delta circuit, because this would only have 3 wires instead of 4 ! This can be a typical problem when using frequency converters: Due to the high clock frequencies there might be a capacitive earth current which is the fourth „wire".
- You have a circuit in a delta configuration. If there are additional sources in one or all of the three 'loads' (e.g. by induction), there can flow a current inside the delta circuit.

Following you find an overview over the different wirings, the groups, the measured values and where you can find the values in the display. After the grouping of the wiring you see how the signals are connected to instrument and what values are calculated.

Wiring '3+0, $\mathrm{U}^{\star} \mathrm{I}^{\star}->\mathrm{U} \Delta \mathrm{I} \Delta^{\prime}$ (3 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values in star circuit measured with the first measuring channel $\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Chn1 (U1,I1) A:1
2	A	The values in star circuit measured with the second measuring channel $\left(\mathrm{U}_{2}, \mathrm{I}_{2}\right)$	Chn2 (U2,I2) A:2
3	A	The values in star circuit measured with the third measuring channel $\left(\mathrm{U}_{3}, \mathrm{I}_{3}\right)$	Chn3 (U3,I3) A:3
9	A	The values in delta circuit, calculated from display channel 1 to $3\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link123 (U12,I12) A:9
10	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link123 (U23,I23) A:10
15	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link123 (U31,I31) A:11
	A	The total values (sum channel $)$ of group A (display channel 9 to 11$)$	Sum(9-11) A:15

For typical measuring circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'.

Wiring ' $3+0, \mathrm{U} \Delta I^{\star}->\mathrm{U} \Delta I \Delta^{\prime}$ (3 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn1 (U12,I1) A:1
2	A	The values measured with the second measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn2 (U23,I2) A:2
3	A	The values measured with the third measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn3 (U31,I3) A:3
9	A	The values in delta circuit, calculated from display channel 1 to $3\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link123 (U12,I12) A:9
10	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link123 (U23,I23) A:10
11	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link123 (U31,I31) A:11
15	A	The total values (sum channel) of group A (display channel 9 to 11)	Sum(9-11) A:15

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'.

Wiring ' $3+0, \mathrm{U} \Delta \mathrm{I}^{\star}->\mathbf{U}^{\star} \mathrm{I}^{\star \prime}$ (3 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn1 (U12,I1) A:1
2	A	The values measured with the second measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn2 (U23,I2) A:2
3	A	The values measured with the third measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn3 (U31,I3) A:3
9	A	The values in star circuit, calculated from display channel 1 to $3\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Link123 (U1,I1) A:9
10	A	The values in star circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{2}, \mathrm{I}_{2}\right)$	Link123 (U2,I2) A:10
15	A	The values in star circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{3}, \mathrm{I}_{3}\right)$	Link123 (U3,I3) A:11
15	A	The total values (sum channel) of group A (display channel 9 to 11)	Sum(9-11) A:15

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'.

Wiring ' $3+1, U^{*} I^{*}->\mathrm{U} \Delta I \Delta$ ' (4 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values in star circuit measured with the first measuring channel $\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Chn1 (U1,I1) A:1
2	A	The values in star circuit measured with the second measuring channel $\left(\mathrm{U}_{2}, \mathrm{I}_{2}\right)$	Chn2 (U2,I2) A:2
3	A	The values in star circuit measured with the third measuring channel $\left(\mathrm{U}_{3}, \mathrm{I}_{3}\right)$	Chn3 (U3,I3) A:3
4	B	The values measured with the fourth measuring channel	Chn4 B:4
10	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link123 (U12,I12) A:9
11	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link123 (U23,I23) A:10
15	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link123 (U31,I31) A:11
The total values (sum channel) of group A (display channel 9 to 11)	Sum(9-11) A:15		

For typical measuring circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'.

Wiring ' $3+1, \mathrm{U} \Delta I^{\star}->\mathrm{U} \Delta I \Delta^{\prime}$ (4 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn1 (U12,I1) A:1
2	A	The values measured with the second measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn2 (U23,I2) A:2
3	A	The values measured with the third measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn3 (U31,I3) A:3
4	B	The values measured with the fourth measuring channel	Chn4 B:4
9	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link123 (U12,I12) A:9
10	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link123 (U23,I23) A:10
11	A	The values in delta circuit, calculated from display channel 1 to 3 $\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link123 (U31,I31) A:11
15	A	The total values (sum channel) of group A (display channel 9 to 11$)$	Sum(9-11) A:15

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'.

Wiring ' $3+1, \mathrm{U} \Delta I^{\star}->\mathrm{U}^{\star}{ }^{\star}$ ’ (4 channel instruments only)

Display channel	Group	Meaning	Header
1	A	The values measured with the first measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn1 (U12,I1) A:1
2	A	The values measured with the second measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn2 (U23,I2) A:2
3	A	The values measured with the third measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn3 (U31,I3) A:3
4	B	The values measured with the fourth measuring channel	Chn4 B:4
9	A	The values in star circuit, calculated from display channel 1 to $3\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Link123 (U1,I1) A:9

Display channel	Group	Meaning	Header
10	A	The values in star circuit, calculated from display channel 1 to $3\left(\mathrm{U}_{2}, \mathrm{I}_{2}\right)$	Link123 (U2,I2) A:10
11	A	The values in star circuit, calculated from display channel 1 to $3\left(\mathrm{U}_{3}, \mathrm{I}_{3}\right)$	Link123 (U3,I3) A:11
15	A	The total values (sum channel) of group A (display channel 9 to 11$)$	Sum(9-11) A:15

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'.

For further information about this tables see also chapter 5.3, 'Definition of measuring values'.

2.6 More than 4 power measuring channels

If you connect a 2 nd LMG500 or an extension box to the basic instrument, you can use up to 4 additional power measuring channels. If you have an instrument with up to 8 channels, it is internally the same like a 4 channel instrument and a second one. This additional channels are placed in the groups ' C ' and ' D '. In principle for the second unit you have the same wiring selections:

Wiring ' $1+0$ Channels' (1 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5

Wiring '2+0 Channels'(2 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5
6	C	The values measured with the second extension/sixth measuring channel	Chn6 C:6
12	C	The calculated (not measured) current I_{3} and voltage U U $_{12}$ of group C (linked channel)	Link56 (U3,13) C:12
17	C	The total values (sum channel) of group C (display channel 5 to 6)	Sum(5-6) C:17

Wiring ' $1+1$ Channels'(2 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5
6	D	The values measured with the second extension/sixth measuring channel	Chn6 D:6

Wiring '3+0 Channels'(3 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5
6	C	The values measured with the second extension/sixth measuring channel	Chn6 C:6
7	C	The values measured with the third extension/seventh measuring channel	Chn7 C:7
17	C	The total values (sum channel) of group C (display channel 5 to 7)	Sum(5-7) C:17

Wiring '2+1 Channels'(3 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5
6	C	The values measured with the second extension/sixth measuring channel	Chn6 C:6
7	D	The values measured with the third extension/seventh measuring channel	Chn7 D:7
12	C	The calculated (not measured) current I_{3} and voltage U_{12} of group C (linked channel)	Link56 (U3,I3) C:12
17	C	The total values (sum channel) of group C (display channel 5 to 6)	Sum(5-6) C:17

Wiring '4+0 Channels'(4 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5

Display channel	Group	Meaning	Header
6	C	The values measured with the second extension/sixth measuring channel	Chn6 C:6
7	C	The values measured with the third extension/seventh measuring channel	Chn7 C:7
8	C	The values measured with the fourth extension/eighth measuring channel	Chn8 C:8
17	C	The total values (sum channel) of group C (display channel 1 to 4)	Sum(5-8) C:17

Wiring '3+1 Channels'(4 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5
6	C	The values measured with the second extension/sixth measuring channel	Chn6 C:6
7	C	The values measured with the third extension/seventh measuring channel	Chn7 C:7
8	D	The values measured with the fourth extension/eighth measuring channel	Chn8 D:8
17	C	The total values (sum channel) of group C (display channel 5 to 7)	Sum(5-7) C:17

Wiring ' $2+2$ Channels'(4 extention channel instruments only)

Display channel	Group	Meaning	Header with Aron set to off
5	C	The values measured with the first extension/fifth measuring channel	Chn5 C:5
6	C	The values measured with the second extension/sixth measuring channel	Chn6 C:6
7	D	The values measured with the third extension/seventh measuring channel	Chn7 D:7
8	D	The values measured with the fourth extension/eighth measuring channel	Chn8 D:8
12	C	The calculated (not measured) current I_{3} and voltage U_{12} of group C (linked channel)	Link56 (U3,I3) C:12

Display channel	Group	Meaning	Header with Aron set to off
13	D	The calculated (not measured) current I_{3} and voltage U_{12} of group D (linked channel)	Link78 (U3,I3) D:13
17	C	The total values (sum channel) of group C (display channel 5 to 6)	Sum(5-6) C:17
18	D	The total values (sum channel) of group D (display channel 7 to 8)	Sum(7-8) D:18

Wiring ' $2+2$ Channels'(4 extention channel instruments only)

Display channel	Group	Meaning	Header with Aron set to on
5	C	The values measured with the first extension/fifth measuring channel	Chn1 (U12,I1) A:1
6	C	The values measured with the second extension/sixth measuring channel	Chn2 (U32,I3) A:2
7	D	The values measured with the third extension/seventh measuring channel	Chn3 (U12,I1) B:3
8	D	The values measured with the fourth extension/eighth measuring channel	Chn4 (U32,I3) B:4
12	C	The calculated (not measured) current I_{2} and voltage U_{31} of group C (linked channel)	Link56 (U31,I2) C:12
13	D	The calculated (not measured) current I_{2} and voltage U_{31} of group D (linked channel)	Link78 (U31,I2) D:13
17	C	The total values (sum channel) of group C (display channel 5 to 6)	Sum(5-6) C:17
18	D	The total values (sum channel) of group D (display channel 7 to 8)	Sum(7-8) D:18

Wiring ' $3+0, U^{*} I^{\star}->U \Delta I \Delta$ ' (3 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values in star circuit measured with the first extension/fifth measuring channel $\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Chn5 (U1,I1) C:5
6	C	The values in star circuit measured with the second extension/sixth measuring channel (U_{2}, $\left.\mathrm{I}_{2}\right)$	Chn6 (U2,I2) C:6
7	C	The values in star circuit measured with the third extension/seventh measuring channel (U_{3}, $\left.\mathrm{I}_{3}\right)$	Chn7 (U3,I3) C:7

Display channel	Group	Meaning	Header
12	C	The values in delta circuit, calculated from display channel 5 to $7\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link567 (U12,I12) C:12
13	C	The values in delta circuit, calculated from display channel 5 to $7\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link567 (U23,I23) C:13
14	C	The values in delta circuit, calculated from display channel 5 to $7\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link567 (U31,I31) C:14
17	C	The total values (sum channel) of group C (display channel 12 to 14$)$	Sum(12-14) C:17

Wiring ' $3+0, U \Delta I^{\star}->U \Delta I \Delta^{\prime}$ (3 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn5 (U12,I1) C:5
6	C	The values measured with the second extension/sixth measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn6 (U23,I2) C:6
7	C	The values measured with the third extension/seventh measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn7 (U31,I3) C:7
12	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link567 (U12,I12) C:12
13	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link567 (U23,I23) C:13
14	C	The values in delta circuit, calculated from display channel 5 to 7 ($\left.\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link567 (U31,I31) C:14
17	The total values (sum channel) of group C (display channel 12 to 14)	Sum(12-14) C:17	

Wiring ' $3+0, \mathbf{U} \Delta I^{\star}->\left.\mathbf{U}^{\star}\right|^{\star \prime}$ (3 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn5 (U12,I1) C:5
6	C	The values measured with the second extension/sixth measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn6 (U23,I2) C:6
7	C	The values measured with the third extension/seventh measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn7 (U31,I3) C:7
12	C	The values in star circuit, calculated from display channel 5 to $7\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Link567 (U1,I1) C:12

Display channel	Group	Meaning	Header
13	C	The values in star circuit, calculated from display channel 5 to $7\left(\mathrm{U}_{2}, \mathrm{I}_{2}\right)$	Link567 (U2,I2) C:13
14	C	The values in star circuit, calculated from display channel 5 to $7\left(\mathrm{U}_{3}, \mathrm{I}_{3}\right)$	Link567 (U3,I3) C:14
17	C	The total values (sum channel) of group C (display channel 12 to 14)	Sum(12-14) C:17

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'.

Wiring ' $3+1,\left.U^{*}\right|^{\star}->U \Delta I \Delta^{\prime}$ ' (4 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values in star circuit measured with the first extension/fifth measuring channel $\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Chn5 (U1,I1) C:5
6	C	The values in star circuit measured with the second extension/sixth measuring channel (U2, $\left.\mathrm{I}_{2}\right)$	Chn6 (U2,I2) C:6
7	C	The values in star circuit measured with the third extension/seventh measuring channel (U3, $\left.\mathrm{I}_{3}\right)$	Chn7 (U3,I3) C:7
8	D	The values measured with the fourth extension/eighth measuring channel	Chn8 D:8
12	C	The values in delta circuit, calculated from display channel 5 to 7 ($\left.\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link567 (U12,I12) C:12
13	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link567 (U23,I23) C:13
14	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link567 (U31,I31) C:14
17	C	The total values (sum channel) of group A (display channel 12 to 14)	Sum(12-14) C:17

Wiring ' $3+1, \mathrm{U} \Delta I^{\star}->\mathrm{U} \Delta I \Delta^{\prime}$ ' (4 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn5 (U12,I1) C:5

Display channel	Group	Meaning	Header
6	C	The values measured with the second extension/sixth measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn6 (U23,I2) C:6
7	C	The values measured with the third extension/seventh measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn7 (U31,I3) C:7
8	D	The values measured with the fourth extension/eighth measuring channel	Chn8 D:8
12	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{12}, \mathrm{I}_{12}\right)$	Link567 (U12,I12) C:12
13	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{23}, \mathrm{I}_{23}\right)$	Link567 (U23,I23) C:13
14	C	The values in delta circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{31}, \mathrm{I}_{31}\right)$	Link567 (U31,I31) C:14
17	C	The total values (sum channel) of group C (display channel 12 to 14$)$	Sum(12-14) C:17

Wiring ' $3+1, U \Delta I^{\star}->\left.U^{\star}\right|^{\star}$ ’ (4 extention channel instruments only)

Display channel	Group	Meaning	Header
5	C	The values measured with the first extension/fifth measuring channel $\left(\mathrm{U}_{12}, \mathrm{I}_{1}\right)$	Chn5 (U12,I1) C:5
6	C	The values measured with the second extension/sixth measuring channel $\left(\mathrm{U}_{23}, \mathrm{I}_{2}\right)$	Chn6 (U23,I2) C:6
7	C	The values measured with the third extension/seventh measuring channel $\left(\mathrm{U}_{31}, \mathrm{I}_{3}\right)$	Chn7 (U31,I3) C:7
8	D	The values measured with the fourth extension/eighth measuring channel	Chn8 D:8
12	C	The values in star circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{1}, \mathrm{I}_{1}\right)$	Link567 (U1,I1) C:12
13	C	The values in star circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{2}, \mathrm{I}_{2}\right)$	Link567 (U2,I2) C:13
14	C	The values in star circuit, calculated from display channel 5 to 7 $\left(\mathrm{U}_{3}, \mathrm{I}_{3}\right)$	Link567 (U3,I3) C:14
17	C	The total values (sum channel) of group C (display channel 12 to 14)	Sum(12-14) C:17

3 Installation

3.1 Unpacking and putting into operation

Having unpacked the equipment, it should be checked for signs of damage. Damage due to transportation should be reported to the equipment supplier at the earliest opportunity. If it is uncertain to use the damaged equipment safely, then the equipment should not be used.

The package should be stored for further transports (e.g. for the annual calibration according to ISO9000).

After delivery the following items should be present:

- 1 LMG500 with the ordered number ' n ' of measuring channels
- 1 User manual
- $\quad \mathrm{n} * 4$ Safety laboratory leads, $2.5 \mathrm{~mm}^{2}, 1 \mathrm{~m}, 1 / 2$ in violet, $1 / 2$ in grey
- 1 Mains supply cable

Further accessories as listed in the delivery note.

The instrument should only be used in a clean and dry environment and must never be operated in excessively dusty or moist spaces. To ascertain sufficient air circulation the instrument should be operated in a horizontal position or tilted only to the degree possible by of the adjustable handle. The instrument should not operate in direct sunlight.

3.2 General set-up

In general the instrument stores the actual settings as well as the last used menu. Pressing the both lower softkeys when switching on the instrument until you hear a beep will reset all settings to the default parameters.

By this you can delete faulty scripts, which could block the instrument.

3.3 Connections of the LMG500

First of all please refer to chapter 1.1, 'Safety Instructions'.
To ensure correct power measurement polarity, connect the cabling to the test circuit so that the grey terminals (U and I) are used as a reference. In other words, the signal source should point towards the terminals $\mathrm{U}^{*}, \mathrm{U}_{\text {Sensor }}, I^{*}, \mathrm{I}_{\mathrm{HF}}$ and $\mathrm{I}_{\text {Sensor }}$.

When working with DC voltages/currents, these terminals are the positive connections.

The following diagrams are some examples for typical connections of the instrument. But all other measuring circuits are also possible (e.g. circuits which measure the correct current instead of the correct voltage).

3.3.1 Measuring circuit for typical line applications using the internal current path

Figure 3: Measuring circuit 3 phase system with neutral
In this circuit we measure with the first three channels the voltage, current and power of the three phase system. With the fourth channel we measure additionally the current in the neutral wire and the voltage between neutral and earth. Of course you can use the same circuit without the fourth channel, if you are not interested in this values.

This circuit should be measured with wiring ' $3+1$ Channels'.
Wiring ' $4+0$ Channels' is also possible, but then the measured power of channel 4 would be added to the total power of the system (this could be correct, but depends very much on what you want to measure!).

3.3.2 Measuring circuit for measuring efficiency of 3/1phase systems

Figure 4: Measuring circuit for measuring efficiency ($\mathbf{3} / 1$ phase)
With group A you measure the three phase power, with group B the one phase power of the system. The frequencies of group A and B can be different.

You can use this circuit also in the other direction, when you have a one phase source and a 3 phase load (e.g. solar panel pushing energy to the mains).

This circuit should be measured with wiring ' $3+1$ Channels'. If your 3phase load is an delta circuit and you have the option L50-O6 (star to delta conversion) implemented, you can also use the wiring ' $3+1, \mathrm{U} * \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta^{\prime}$ ' to determine all the values of the delta circuit.

3.3.3 Measuring circuit (typical) for star to delta conversion (option L50-06)

Figure 5: Star to delta conversion
With group A you measure the linked voltages and the currents in the phases. The LMG500 calculates with this both values a power for each channel, but this power will not be the power of the system, because the measured voltages ($\mathrm{U}_{12}, \mathrm{U}_{23}$ and U_{31}) belong not to the currents (I_{1}, I_{2} and I_{3}). The power values are a mix from star and delta values.

But with the star to delta conversion, you can either transform the voltages to star voltages or you can transform the currents to delta currents. This will depend on your load. Now you have voltage and current in the same circuit and now you have also power values which exist in your circuit.

However the group B can be used independently like in the above examples.
This circuit should be measured with wiring ' $3+1, \mathrm{U} \Delta \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta^{\prime}$ ' or ' $3+1, \mathrm{U} \Delta \mathrm{I}^{*}->\mathrm{U}^{*} \mathrm{I}^{*}$ '.

3.3.4 Aron wiring

Figure 6: Measuring circuit with current and voltage transformers in Aron wiring
This wiring is for measuring the power of a three phase system without a neutral conductor. This circuit should be measured with wiring ' $2+0$ Channels', ' $2+1$ Channels' or ' $2+2$ Channels'. Here current and voltage are measured with transformers to enlarge the ranges, e. g. for measuring in middle or high voltage systems with also high currents. The both free channels could be used to measure another three phase system: refer ,,3.3.5 Measuring circuit for measuring efficiency of $3 / 3$ phase systems".

When using voltage or current transformers please watch the applicable safety standards (e.g. earthing, isolation, ...)!

3.3.5 Measuring circuit for measuring efficiency of 3/3phase systems

Figure 7: Measuring circuit for measuring efficiency (3/3phase)
With group A you measure the first three phase power, with group B the second one. The frequencies of group A and B can be different. This is a double aron circuit.

This circuit should be measured with wiring ' $2+2$ Channels'.

3.3.6 Measuring circuit using an external current sensor

Figure 8: Measuring circuit with external current sensor
Here you see, how to install your current sensor.
For easy usage all ZES sensors have an EEPROM implemented in which we have stored the name, scaling, ranges, adjustment and delay time. The LMG500 recognises automatically, which ZES sensor is connected and sets up the range menu. Further on we correct some of the
errors the sensor produces (transfer error, delay time). So you get the best measuring results with each sensor.

In this monophase application you could use every wiring.
When having shielded wires were the current has to be measured, make sure that you do not measure the current in the shield!

3.3.7 Measurements at middle and high voltage systems

Figure 9: Measuring circuit for measuring in middle and high voltage systems
This is the measuring circuit for measuring in middle and high voltage systems. You can see that there is no PE conductor. For very high currents and voltages, there are transformers in each path implemented. The chosen wiring should be ' $3+0$ Channels' or ' $3+1$ Channels'.

When using voltage or current transformers please watch the applicable safety standards (e.g. earthing, isolation, ...)!

3.3.8 Measurements at middle and high voltage systems without \mathbf{N}

Figure 10: Measuring circuit for measuring in middle and high voltage sytems without N Using artificial midpoint

This is the measuring circuit for measuring in middle and high voltage systems without the neutral N. You can see that there is no PE conductor. You just need each two transformers for voltages and currents. The chosen wiring should be ' $3+0$ Channels' or ' $3+1$ Channels'.

When using voltage or current transformers please watch the applicable safety standards (e.g. earthing, isolation, ...)!

Please note

The voltage resp. current transformers are connected each with by one common wire. Please make sure, that only this wire is connected to earth to prevent a short curcuit of the current via the earthing.

3.3.9 Measurements at middle and high voltage systems without \mathbf{N}

Figure 11: Measuring circuit for measuring in middle and high voltage sytems without N Using star to delta conversion

This is the measuring circuit for measuring in middle and high voltage systems without the neutral N. You can see that there is no PE conductor. You just need each two transformers for voltages and currents. The chosen wiring should be ' $3+x, U \Delta I *->U \Delta I \Delta$ ' or ' $3+x, U \Delta I$ *$>U^{*} I^{*}$.

When using voltage or current transformers please watch the applicable safety standards (e.g. earthing, isolation, ...)!

Please note

The voltage resp. current transformers are connected each with by one common wire. Please make sure, that only this wire is connected to earth to prevent a short curcuit of the current via the earthing.

3.4 Coupling of two LMG500 (L50-Z13) for a 8 channel instrument

Two LMG500 can be coupled to build up an instrument with 8 power channels. For this you need the coupling cable L50-Z13 which is connected to the 'channel extention' jacks of both instruments.

One instrument has to be configured to be the slave. How to do this you find in 4.4.1, 'Misc.'. The slave is now just a housing and supply for the channels. All other electronics is disabled, as well as the slave's options. The slave channels run with the same options like the master instrument.

The additional channels are displayed in the master instrument as channels 5 to 8 and with the new group identifiers ' C ' and ' D '. All the other handling is the same like in the basic instrument.

After coupling instruments and after disconnecting them it is necessary to check and set up the configuration of the instruments!

4 Instrument controls

4.1 Front panel

Figure 12: Front panel of the instrument

1. Graphical Display
2. Softkeys

Their function depends on the indicated function in the display.
3. Rotary knob

This knob is used for several number settings, for selections in lists and for cursor moving.
A turn to the right increases the number. In many cases you can also push the knob to confirm a selection.

4. ENTER key

This key is used to finish an entering and to quit an error message
5. ESC key

This key is used cancel an entering mode and to quit an error message.
6. Dark menu selection keys

With this keys you can call different menus with the pure measuring values:
Default, Current, Voltage, Power, Int. Value and Graph.
A second function of this keys is to enter the digits from ' 4 ' to ' 9 ' when in a number entering mode.
7. Violet menu selection keys

With this keys you can call several menus for setting up the instrument:
Measure: The main measuring parameters
Int. Time: The parameters for time dependent measuring

Custom: The set-up of the custom defined menus
Ranges: The range selection of the measuring channels
Misc.: Setup of date, time and display brightness.
IF/IO: Setup of options
A second function of this keys is to enter the digits from ' 0 ' to ' 3 ' and ' \because ' and ' - ' when in a number entering mode.
8. Floppy disk drive on older instruments. Alternatively there can be a USB memory stick adapter instead of the floppy (option L50-O2USB). This USB adapter can be used for memory sticks only!
9. Special function keys

Status: Here you get status information about the LMG500
Start: \quad This key is used to start time dependent measurements
Stop: \quad This key is used to stop time dependent measurements
Save/Recall: The actual menu is stored to the memory card
Print/Log: The actual menu is send to the printer output or logger
Freeze: Holds the measuring values of the last cycle in the display or enables the refresh of the display after each cycle

10.Special Function Key F3

11.Special Function Key F2

12.Special Function Key F1
13.Mains switch

4.2 Rear panel

Figure 13: Rear panel of the instrument

First measuring channel:

1. External voltage sensor identification

Identification input for external voltage sensors. It is used together with sensor adaptor L50-Z14. 9-pin SUB-D socket.
2. External current sensor identification

Identification input for external current sensors. It is used together with sensor adaptor L50-Z14. 9-pin SUB-D socket.
3. I*

Wide dynamic current input (high), 4 mm violet safety socket, panel mounted
4. I

Current input (low), 4 mm grey safety socket, panel mounted. This is the reference socket for the $I^{*}, \mathrm{I}_{\mathrm{HF}}$ and $\mathrm{I}_{\text {sensor }}$ input.
5. $\mathrm{I}_{\text {sensor }}$

Voltage input for external current sensors (high), 4 mm red safety socket, panel mounted.
6. I_{HF}

High frequent current input (high), 4 mm orange (violet at older instruments) safety socket, panel mounted
7. $U_{\text {sensor }}$

Voltage input external voltage sensors (high), 4 mm red safety socket, surface mounted (panel mounted with older instruments).
8. U^{*}

Voltage input (high), 4mm yellow safety socket, surface mounted (violet and panel mounted with older instruments)
9. U

Voltage input (low), 4mm black safety socket, surface mounted (grey and panel mounted with older instruments). This is the reference socket for the U^{*} and $\mathrm{U}_{\text {sensor }}$ input.
10.First measuring channel.
11.Second measuring channel with same sockets like first channel
12.Third measuring channel with same sockets like first channel
13.Fourth measuring channel with same sockets like first channel
14.Not used

15.Mains

Fused chassis plug with holder for fuses.

16.PE

Connector for additional earthing, 4 mm green/yellow safety socket

17.Channel extension

Here you can connect additional measuring channels from the extension box LMG500-E or a second LMG500.

18.Printer

Centronics compatible interface or printer connection
25-pin SUB-D socket
19.ComB: Serial RS232 interface

This is a serial interface which can be used for remote control, but usually it is used for special devices, like the LAN adaptor L50-Z318
9-pin SUB-D jack
20.ComA: Serial RS232 interface

This is the standard serial interface for remote control of the instrument.
This interface is also used for software updates and service purposes. 9-pin SUB-D socket
21.USB, option L50-02USB.

Jack for an USB cable with plug type B. This USB adapter can be used for remote controlling only!

22.LAN, option L50-O2LAN
 RJ45 socket for a LAN cable. This LAN can be used for remote controlling only!

23.PS/2

Connector for an external keyboard. This can be connected to enter for example formulas in a comfortable way.
24.Sync.

Socket for external synchronisation and measuring time control of the instrument. 15-pin SUB-D socket
25.IEEE488

Parallel interface, 24-pin micro-ribbon socket

26.I/O card

Additional analogue and digital inputs and outputs for auxiliary signals. Two 25-pin SUB-D sockets.

4.3 Display

The display is divided into 3 sections:

- The softkeys at the right border change their meaning depending on the actual menu. A softkey with a black background is an active softkey. A dotted softkey can not be used.
- The elements of the status line at the top of the display are described in '4.3.1 Status line'. In this line you can see the most important status information of the instrument. This line is always visible.
- In the main display the different menues are displayed. This can be measuring values, set up menues or graphs.
At the bottom of this region a possible error message is displayed. This error messages have to be quit by pressing Enter or Esc.

4.3.1 Status line

Figure 14: Status line
The status line has the following sub sections (from left to right):

- The voltage and current signal level indicators. Here you can see how much of the actual voltage/current range has been used. This display is important for the selection of the measuring range. At the left side three information: The upper one is the group (A to D), in the middle is synchronisation source of the channel. Here you can find:

Un for the voltage channel n
In for the current channel n
Li for line synchronisation
Ex for external synchronisation
As (inverse) for asynchronous (no synchronisation)
The lower information can be:
'LF' (inverse displayed) indicating that the signal of the channel is low pass filtered.

- The mode indicator. In this line you see the chosen measuring mode. Possible values are 'Normal', 'CE-Harm', ‘CE-Flk', 'HRM100' and 'Trans'.
In the line below, the time base indicator shows the actual chosen cycle time. The bar below this number shows how much of the cycle time is over.
- The 'Active' indicates, that the display is updated with measuring values. 'Freeze' indicated a frozen display. The current displayed values don't change until 'Active' is chosen again (key Freeze).
Below: the remote indicator. 'Remote' indicates that the instrument is remote controlled by a PC. Some setting can now only be done by the PC but not at the front panel. 'Local' indicates, that the instrument works as a stand alone instrument.

4.4 General menues

If you are in a sub menu of a menu, you can reach the main menu by pressing the correct softkey, until you are in the main menu or you can press the menu button (e.g. IF/IO) again.

Here you find the description of menues which are equal for all measuring modes.

4.4.1 Misc.

Globals tab

Here you can do 4 settings:
Date Here you can enter the actual date. This date is used inside the instrument.
Time Here you can enter the actual time. This time is used inside the instrument. Instead of the ' \because ' you have to enter a ' \because '.

Keyboard Here you can define the layout of a PC keyboard which is connected to the PS/2 connector at the rear .

Color Here you can set-up the colours of the display.

Figure 15: Misc. menu

Advanced tab

Here you can set-up some advanced, special things which should not be used under usual conditions. Just users which are sure to know what they do should change values in this menu. With wrong settings measuring results might be wrong! Following things can be set-up:
Zero \quad The zero point rejection (see 12.2, 'Display of values') can be switched off. It will be activated again each time you restart the instrument.

Phan. Vals. The rejection of phantom values can be deactivated. Phantom values appear for example at wiring ‘ $3+1, \mathrm{U} \Delta \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta$ ', because the measured star current has physically nothing to do with the measured triangle voltage. But the power measuring channel sees both signals at the same time and calculates a power for them, the phantom power.

Slave Defines this instrument as the slave in a Master/Slave configuration
Z-Adj. allows you to adjust the zero point of the instrument. You can only adjust the actual selected voltage and current jacks.
You can reset the instrument to the factory settings of calibration by holding the lower two softkeys pressed while switching on the instrument (for about 10s, until the instrument beeps).

Be careful with this function because you can also deadjust the instrument!!!

For the exact adjustment steps please refer to 11.3 .3 'Zero adjustment of the instrument'.

4.4.2 IF/IO

In this menu you can set-up all features which are available as instrument options. Further on you see the actual software version and the installed options. With List you can choose a short list or detail list. In the last one you can scroll with the rotary knob.

4.4.2.1 Interfaces for remote control

With exception of the IEEE interface all interfaces could also be used for data logging (see 10, 'Logging of values to drives, printer and interfaces'. To remote control the LMG you first have to set-up the wished interface for this job.

Press several times $I F / I O$ to reach the IF/IO menu. By pressing IF you can set-up the remote device. You have several available 'profiles' from which you can select one (with Dev.). These profiles are predefined but they can be modified when necessary (with Set).

Figure 16: Interface Setup
If you modify the remote control profile for ComA the data logging profile for ComA is not changed!

If you want to reserve an interface for logging, it can happen that this interface is already used for logging. In this case you are asked, if you want to reassign it for logging. Press Enter to do this or Esc to cancel.

4.4.2.1.1 Remote control profiles

The actual setting of a profile are displayed under properties. You can change them by pressing Set.

Following profiles are available. You get just these displayed which are physically present:

ComA: Terminal

Choose this profile if you are not familiar with the remote possibilities of the LMG and you want to try to enter some commands manually via a terminal program. You can just change the baud rate. The other parameters are set up to values (EOS=Terminal, Echo=off, Protocol=None) so that you can work with most terminal programs directly. The default value for the baud rate is 9600 baud.

ComA: Script

Instead of entering a script via the rotary knob you can also transfer it via the serial interface. If you want to do this, you can get a freeware program from ZES. This profile is predefined to communicate with this program. You just have to set-up the profile, connect LMG and PC with a 1:1 cable and start the software.

With this software you can create, read out, modify, write and save a script.

ComA: OEM Appl

This should be chosen for external software like SYS61K, TERM-L5, LMG-Control, CE-Test61k, CE-Test Standby or other software from ZES (if no other specification in the software exists). Most parameters are fixed (EOS=<lf>, Echo=off, Protocol=RTS/CTS) and you can just modify the baudrate. Default value is 38400 baud.

ComA: Custom

If you want to implement the LMG into your own system, you can set-up in this profile all parameters:

Baudrate The serial interface supports baud rates from 1200 (maximum about 100 characters per second) up to 115200 baud (10000 characters per second). Usually you use the biggest value. Some old PC support just up to 38400 baud.
EOS End-Of-String character(s). This are the characters which mark the end of a command or answer. Possible values are '<lf>', '<cr>, <cr><lf>' and 'Terminal'. In 'Terminal' mode each '<cr>' of the computer is answered by a '<cr><lf>' of the instrument. By this you get a nice display if you use an terminal program (if you have also activated the echo).
Echo If this is set on, each character you send to the LMG is returned to the sender. By this you can check, if the cable is working and in a terminal program you see, what you have typed.
Protocol The LMG supports 'None' protocol and 'RTS/CTS'. The last one is a hardware handshake. It should be used, if the computer can't read all data in real time and it gets very many data.

ComB: Custom

Same like ComA. Please note that you have to use a null modem cable.

GPIB

If you want to use this interface you need a GPIB controller in your PC. You have just to setup the address of the LMG (in the range from 1 to 30).

4.4.2.1.2 remote <-> local

If you send any characters to the LMG it changes to the remote state (you see a 'REM' in the status line). Then it is impossible to change any parameters like cycle time, because this might conflict with an actual remote command.

To leave this remote state you can send an 'go-to-local' command via interface or you can press the Goto Local softkey.

If you send further characters to the instrument it changes back to the remote state.

4.4.2.2 Processing signal interface (option L50-O3)

With IO you reach the set-up menus for the processing signal interface. With the rotary knob you can select four tabs ('A_In', 'A_Out', 'D_In' and 'D_Out'). By pressing the rotary knob you can set-up each tab. Back returns to the $I F / I O$ menu.

4.4.2.2.1 Analogue Input tab

If you are in the setting mode of this menu, you can with the rotary knob select a channel.
Zero Here you set-up, which value will be displayed with 0 V input.
FS Here you set-up, which value will be displayed with 10 V input.
Diff Specifies, if the inputs are single ended (,,off") against AIn_GND (default setting) or differential (,,on"). With differential inputs, the inputs 2, 4, 6 and 8 disappear and the differences AIn1-AIn2, AIn3-AIn4, AIn5-AIn6 and AIn7-AIn8 are display in the channels $1,3,5$ and 7.

Example: You select Zero ' 30 ' and $\mathbf{F S}$ ' 120 '. Now you get with 0 V input a display of 30, with 10 V input a display of 120 and with 5 V input a display of 75 . The output is updated every measuring cycle.

Figure 17: Analogue inputs
Pressing the rotary knob returns you to the tab selection.

4.4.2.2.2 Analogue Output tab

If you are in the setting mode of this menu, you can with the rotary knob select a channel.

Value This allows you to set-up the value which should be output. See chapter 4.5, 'Entering identifiers' for details.

Zero Here you set-up, which value of Value will result an output of 0V.
FS Here you set-up, which value of Value will result an output of 10 V .

Figure 18: Analogue outputs
Example1: You select Value 'Utrms', Zero '200' and FS '250'. Now you get with Utrms $=200 \mathrm{~V}$ an output of 0 V , with Utrms $=250 \mathrm{~V}$ an output of 10 V and with Utrms $=230 \mathrm{~V}$ an output of 6 V . The output is updated every measuring cycle, because the values are calculated every measuring cycle.

Pressing the rotary knob returns you to the tab selection.

4.4.2.2.3 Digital Inputs tab

In this menu you get the actual state of the digital inputs. The inputs 1 to 4 of each card are only used for state indication. The inputs 5 and 6 can be used as state indicators or for frequency and direction input (determined by the phase shift between input 5 and 6). In the last case the input 5 is used to measure the frequency. This is multiplied with the 'Scale' value and displayed under 'Frequency'. A negative frequency value indicates a reverse rotation direction. To change the scaling press the rotary knob and Scl.A (or Scl.B for the card B).

Figure 19: Digital inputs
Pressing the rotary knob returns you to the tab selection.

4.4.2.2.4 Digital Outputs tab

If you are in the setting mode of this menu, you can with the rotary knob select a channel.
Value This allows you to set-up the value which should be output. See chapter 4.5, 'Entering identifiers' for details.

Cond Here you set-up, under which condition the output is in the 'alarm state' (= high impedance of output, symbolised lamp is on!):
on: The output has always alarm state.
off: The output has never alarm state.
$>=$: The output has alarm state if the Value is bigger or equal to the Limit.
<: The output has alarm state if the Value is smaller than the Limit.
Limit Here you set-up, which limit is compared to the Value.
Example: You select 'Utrms: $1<200 \mathrm{~V}$ '. Now you get an alarm for every voltage smaller than 200 V . The output becomes a high impedance state because a 'fail save' function is assumed.

Figure 20: Limit menu
Pressing the rotary knob returns you to the tab selection.

Fail Save Principle

The fail save principle should offer you highest safety in critical applications. The principle is, that a high impedance state is the alarm (active) state. By this also broken or not connected wires as well as not switched on instruments are recognized as fail. Only the low impedance state is recognized as no alarm (deactive).

4.4.2.3 Options key

If you press on the softkey with the key symbol you get an actual software key which represents all installed options in your instrument. Some options of the instrument are software options which can be released by another key. If you for example want to install the 100 Harmonics you send us or your local sales company an order about this option together with your Current Option Key and with your serial number (SN).

Then you get back a second key which you can enter after pressing the key symbol. If the second key is correct, the option is installed.

Note

If you can access the instrument via an interface, you can use LMG-CONTROL to read out and update the key. This is much easier than working with the front panel.

4.4.3 Custom menu

In the standard menus Voltage, Current, ... (see chapters below) we have defined some values to be displayed which should fit to most customers. For some special applications you can define in the Custom menu your own values and graphics which should be displayed. Further
on you can define your own values by using the integrated script editor (see 4.4.4, 'Script/Formula editor').

When entering you get at least two tabs. To change between the tabs, you have to use the rotary knob. To get the softkeys inside a tab you have to press the rotary knob.

4.4.3.1 New menu tab

Here you first have to define the name of a new (user defined) tab with Name. Then you have to define the mask for the menu with Form. Depending on this mask you can define up to 50 values for a menu. If everything is finished you can create the new menu by pressing Make new. The new menu appears as a new tab which can be edit (see 4.4.3.3, 'User defined tab').

You can define up to 8 menus.
With Load you can recall a previously saved menu from memory card or floppy if installed. You have to select a filename from the list.

4.4.3.2 Vars tab

In the Vars tab you see all variables. By default they are named 'var0' to 'var11'. With Reset you can set them all to ' 0.0 '.

4.4.3.3 User defined tab

Here you do the definitions, which values appear at which place. With the rotary knob you choose the position an press Edit Item. In the dialog you choose with Typ the kind of data do display:

empty	The item will displayed blank. Choosing this is the same like pressing the Del Item softkey.
Value	When choosing this have to choose with Prop a measuring value which should be displayed as value with unit, but without identifier. How to enter the Prop value see 4.5, 'Entering identifiers, characters and text'.
Name+ValueWhen choosing this have to choose with Prop a measuring value which should be displayed as value with unit and with leading identifier. How to enter the Prop value see 4.5, 'Entering identifiers, characters and text'.	
String \quadWhen choosing this have to choose with Prop a text which should be displayed. How to enter the Prop value see 4.5, 'Entering identifiers, characters and text'. Here you get a list of all possible graphs. In principle you can display copies of graphs which you have already set-up in the Graph menu. 'Scp.A:1' selects the first waveform of the group A scope, 'Scp.B:3' the third	

waveform of group B scope. The 'Plot:x' is for selecting one of the four plot functions.
To modify the graphical display you have to change to the Graph menu.

With Font you can choose another than the predefined font for the display.
With Copy menu you create a copy of the complete tab which can then be modified. With Del menu you can remove the complete tab. In a pop up menu you have to confirm this a second time.

To give a menu another name, please use Edit Name.
With Save you can store the menu to a memory card or floppy if installed. You have to select a filename from the list or enter a new one with File name.

4.4.4 Script/Formula editor

You reach the script/formula editor by pressing Edit in 'Script' tab in Custom menu.
With Edit you start entering the script. This is done like written in 4.5, 'Entering identifiers, characters and text'.

Figure 21: Script editor
With Save you can store the script to a memory card or floppy if installed. You have to select a filename from the list or enter a new one with File name.

With Load you can recall a previously saved script.

4.4.4.1 General

The script editor is similar like a simple programming language. The code is entered line by line. It is allowed to have several instructions in one line. Each instruction has to end with a ';'. Therefore an instruction can be written in more than one line. It is also allowed to have
white spaces in the instruction as long as the keywords and identifiers are not divided by them. At the end of a line an automatic carriage return and linefeed are performed. A '\#' indicates the begin of a comment. The comment lasts, until a return is detected (can be entered with new line). An automatic inserted newline will NOT end the comment!

The instruction

$\mathbf{v 0}=\mathrm{Ut}$ rms * Itrms;

is identical to

```
v0 = Utrms* Itrms ;
or
```

```
v0 =
Utrms * Itrms;
```

<- deletes the character left of the cursor. If the cursor is at the first position of a line, it jumps to the last position of the previous line.

You leave the script editor by pressing End. The program is now checked for correct syntax. Above the editor window you see then how many percent of the available memory space have been used.

The script (which includes the formulas) is executed when all values of a cycle have been calculated.

With Reset all variables are preset to 0.0 but the script is still valid. This is important if you use recursive formulas or conditions.

4.4.4.2 Grammar

4.4.4.2.1 Instructions

Instructions control the program flow while execution. If there are no conditioned instructions, the flow is in the same order like the listing. The results of an instruction can be used afterwards.

An instruction consists of one or more expressions. Each instruction (except if, else and fi) has to be finished with ';'. An instruction can be longer than one line. The result must not be assigned to a variable.

4.4.4.2.2 Condition instruction

Condition instructions choose between two alternative program flows. This is done by the expression following immediately to the word if .

```
if(expression) Instructions; fi
or
if(expression) Instructions; else Instructions; fi
```

The brackets for the expression are necessary. Then there could be one or more semicolon separated instructions which are executed if the expression was true. The end of the conditional execution is marked with $f \mathbf{f}$, which is also necessary. The else part is optional.

Condition instructions can be nested, for example to realise a logical AND:

```
if(expression1)
    if(expression2)
        Instruction 1;
            :
        Instruction n;
    fi
fi
```


Example

```
if (Utrms>227.5)
```

 dout_off(1) ;
 dout_off(2);
 else
dout_on (4);
fi

If the voltage is bigger than 227.5 V the digital outputs 1 and 2 are set to off. In the other case the output 4 is set to on.

4.4.4.2.3 Expressions

An expression is a sequence of operators, operands and functions. Expressions are in general recursive, which means they can be nested. But there is a practical limit in CPU power and memory which can cause the message „out of memory".

The order of evaluation of an expression depends on the priority of operands and on the brackets (see below).

4.4.4.2.4 Constants

Constants are always floating point. The valid range is $\pm 3.4 \mathrm{E}-34$ to $\pm 3.4 \mathrm{E}+34$. The number can be entered in usual or scientific notation. The decimal dot is only necessary for floating point numbers.

4.4.4.2.5 Variables

There is a distinction between read only variables and read write variables. The first ones are all measuring values of the LMG but also values like cycle time and measuring ranges. This variables can be used for calculation like constants. The second one are the user defined variables.

So following is o.k.

but

Utrms=0;
is not allowed.

A unit can be assigned to the variable. To assign the unit ' cm ' to the varaible ' a ' write: a.cm=. . .

The result of expressions can only be stored in the user defined variables with the default identifiers 'var0' to 'var11'. This identifiers are valid until they are redefined in a script. The redefinition is simply be done by using a not existing identifier. This identifier replaces the first variable which was not changed until now. The maximum length of the new identifier is 10 characters. In 'Example 2' the identifier Uhigh replaces the identifier varo and ulow replaces var1. As you can see the identifiers are replaced in the order of the occurrence. If you press End, all occurrences of varo are replaced with Uhigh and so on. So you get in the user defined menu or the plot menu the new identifiers.

The read-only variables are identical to the identifiers in the menus (see 4.5, 'Entering identifiers'.

4.4.4.2.5.1 Local variables

A third kind of variables are local variables. They are also user defined, but are not displayed in the custom menu. A local variable starts always with a ' $\$$ ' character:

\$test=Utrms*19.234;

b=Iac*\$test;
In this example \$test is not displayed, but only b.

4.4.4.2.5.2 Environment variables

These variables are accessible via the 'Env' ID as an array: Env[0...7].

They are (in opposite to standard variables) not displayed, but they can (in opposite to local variables) be used externally (e.g. in the processing signal interface). Further on they can be set directly by the interface (see 9.2.2.1.1, 'ENVironment ENV Env’).

4.4.4.2.6 Keywords

These are strings which are no variables or constants but which are used for controlling the script editor:
if The start of a conditioned program sequence. The condition have to follow in the round brackets.
else
fi

The end of the program sequence which is used if the condition of the if was true (no semicolon at the end!). All command after the else until the next fi are used, if the condition of the if was not true. The else is optional.

The end of the program sequence which is used if the condition of the if was true (no semicolon at the end!).

4.4.4.2.7 Functions

The following functions are implemented at the moment (x is the result of a valid expression, constant or function):

(x)	absolute value of x
$\operatorname{acos}(\mathrm{x})$	arcus cosine of x (result in radiant!)
$\operatorname{asin}(\mathrm{x})$	arcus sine of x (result in radiant!)
bell ()	generates a short sound with the internal speaker
btst(x, bit_no)	Returns true, if in variable x bit number bit_no is set. The bits are counted from 1 to 32. You should only apply this function onto integer values like digital inputs or result of flicker measuring. Usually you should not use it with float numbers.
$\cos (\mathrm{x})$	cosine of x (argument in radiant!)
digin(mask)	Returns the value of the digital inputs. The values are coded in one byte: input 1-4 correspond to bit $0-3$ and input $7-10$ to bit $4-7$. So if the inputs 1 and 8 are active, the returned value would be 33 . With mask you can define, which values are checked: With a mask of 32 only the input 8 is checked. In this case the return value can only be 32 or 0 . The mask is useful when checking the status of one input, independent from the others. If you want to check all inputs, you should use a mask of 255 !
dout_off (nr)	Switches digital output number nr. off (into no-alarm state). $1 \leq \mathrm{nr} \leq 8$
dout_on(nr)	Switches digital output number nr on (into alarm state). $1 \leq \mathrm{nr} \leq 8$
freeze ()	freezes the display (like key Freeze)
isrun ()	Returns 1, if the integration is running
isstop()	Returns 1, if the integration is stopped

$\ln (\mathrm{x})$	$\log _{\text {e }}$ of x
$\log (\mathrm{x})$	$\log _{10}$ of x
print ()	Prints the menu in which you started the logging in 'by script' mode (see 10.3.1, 'Output intervals').
reset ()	Same like Reset Softkey in Time Int. menu
scale_i $(\mathrm{chn}, \mathrm{x})$	Scale the current input, chn. is the number of the channel, x the scaling factor.
scale_u (chn, x)	Scale the voltage input, chn. is the number of the channel, x the scaling factor.
$\sin (\mathrm{x})$	sine of x (argument in radiant!)
sqrt (x)	The square root of x
start ()	Same like pressing Start
stop()	Same like pressing Stop
unfreeze()	reactivates the frozen display

4.4.4.2.8 Operators

Operators are symbols which cause actions, when they meet variables, constants or formulas. The script editor offers following operators, sorted by priority:
high priority
: \quad Channel separator, usually used only for multi channel devices (like analogue inputs). E.g. Ain: 3 is the third analogue input channel.
[] Index operator, used for indexed values (arrays), e.g. U[5] is the $5^{\text {th }}$ harmonic of the voltage
() Function call, the value inside the brackets is the parameter to the function

- Negation
- Exponent
/ * Division and Multiplication
+ \quad Addition and Subtraction

```
<, ==, > smaller, equal, bigger (comparator operators)
= Assignment of a value
<> not equal
low priority
```

If there are no brackets, the operators are used in the order listed above.
The result of:
$3^{\wedge} 2 * 4$ is 36
$-\left(3^{\wedge} 2\right) *-4$ is also 36

4.4.4.2.9 Remarks

Each line starting with a ' $\#$ ' is a remark. See '4.4.4.2.14 ,Example 5:Switching digital outputs, depending on harmonics'. Only the first ' $\#$ ' is important, the other don't care.

4.4.4.2.10 Example 1: Freeze at limit violation

If the $23^{\text {rd }}$ harmonic of voltage of channel 1 is bigger than 10 V the display should be frozen and the instrument should inform you with a sound.

```
if(Uh:1[23] > 10)
    freeze();
    bell();
fi
```


Attention!

The function freeze () can cause the display to freeze at the start-up of the instrument. So be careful when using this function.

4.4.4.2.11 Example 2: Getting min/max values

You want to measure the biggest and smallest TRMS values of the voltage.

```
if (Uhigh==0)
    Ulow=RngU : 1;
fi
if (Uhigh<Utrms:1)
    Uhigh=Utrms:1;
fi
if (Ulow>Utrms:1)
    Ulow=Utrms:1;
fi
```

The first if condition is used for resetting the minimum value: With Reset it would be set to 0 which is not sufficient, because this is already the smallest TRMS value. So if the maximum TRMS value is reset to 0.0 , the minimum value is set to the range value which will not be
reached under proper conditions. The second and third condition compute the maximum and minimum value and store them in the variables Uhigh and ulow which can be read out in the Custom menu.

4.4.4.2.12 Example 3: Calculating THD+N

You want to measure the total distortion factor including noise (THD+N) of the voltage of channel 2:

THDN=sqrt ((Utrms:2^2-Uh:2[1]^2)/Uh:2[1]^2);
Please note that this will only work in the harmonic mode, because $\mathrm{Un}: 2[1]$ is only calculated there!

4.4.4.2.13 Example 4: Counting pulses

You want to count the number of current pulses of a battery above 3A (the pulse width has to be bigger than twice the cycle time!)

```
ibat=abs(Idc:1);
if (ibat>3.0)
    if (r == 0)
        n=n+1;
        r=1;
    fi
fi
if (ibat < 3.0)
    r=0;
fi
```


4.4.4.2.14 Example 5:Switching digital outputs, depending on harmonics

```
### Wave1 ###
if(Ih:1[1]>0.08) dout_on(1);
else dout_off(1);
fi
### Wave3 ###
if(Ih:1[3]>0.068) dout_on(2);
else dout_off(2);
fi
### Wave5 ###
if(Ih:1[5]>0.05) dout_on(3);
else dout_off(3);
fi
```

The digital outputs 1 to 3 are switched on if the corresponding harmonic 1 to 5 is bigger than a defined value. In the other case the output is switched off.

4.4.4.2.15 Example 6: Calculation of the efficiency of a motor with torque and frequency input

For the measurement of the efficiency of a motor you can use the analogue and the frequency inputs. To input the torque of the motor use the analogue input (e.g. 1) and for the frequency use the digital frequency input (e.g. card1 Pin 12). For calculation of the efficiency you can use the following formula:

```
M=Ain:1;
n=DigFrq:1;
Pmech=M*n;
eta=Pmech/P :13*100;
```

Important Note: The motor frequency connected to the frequency input (No.1) has to be counted and scaled in Hz. Then you get a result in percent.

4.4.4.3 Printing scripts

You can printout the scripts you have set-up (see 10, 'Logging of values to drives, printer and interfaces'). Please note, that the complete script editor is printed out, not only the visible part.

4.4.4.4 Speed and torque calculation (option MotorTorque-SOFT)

This option provides two functions which calculate the values speed and torque from motor current and voltage. The motor must be a three phase asynchronous standard motors according IEC. There are just some information from type plate or catalogue data necessary. There is no need of a torque measuring shaft or a speed sensor. The motor can be connected to the lines or to a frequency converter.

Measuring unvertainty between no-load operation and 1.5 fold nominal torque typical below 2% of nominal torque resp. rotation speed for motors from 1 kW to 100 kW nominal power and rotation speed between -40% to $+20 \%$ of nominal speed. The calculation is also possible with other nominal power, but with increased uncertainty.

For the calculation, following requirements must be met:

- Wiring
$3+x, U \Delta I^{*}->U^{*} I^{*}$
- Filter

Smaller than half clock frequency. So just the fundamental must be measured, the clock ripple must be rejected.

- Signal coupling

AC

- Sync

Such, that the fundamental frequency is displayed (e.g. I1, LP $<300 \mathrm{~Hz}$)
The two functions are:

torque (Pn, fn, Un, In, pfn, pz, Rk, sc, mk)

speed (Pn, nn, fn, Un, $\operatorname{In}, \mathrm{pfn}, \mathrm{pz}, \mathrm{Rk}, \mathrm{sc}$, mk)

Calculates the torque in Nm. The parameters are:
Pn: Nominal output power in W
fn: Nominal frequency in Hz
Un: Nominal line line voltage of the motor in V
In: Nominal current in A
pfn: Nominal power factor
pz: Number of poles (twice the number of pole pairs)
Rk: Stator line-line copper resistance in Ω
sc: Number of the sum channel, here 15 or 17
mk No load torque correction
Calculates the speed in min^{-1}. The parameters are:
Pn: Nominal output power in W
n : Nominal speed in min^{-1}
fn: Nominal frequency in Hz
Un: Nominal line line voltage of the motor in V
In: Nominal current in A
pfn: Nominal power factor
pz: Number of poles (twice the number of pole pairs)
Rk: Stator line-line copper resistance in Ω
sc: Number of the sum channel, here 15 or 17
mk No load torque correction

The copper resistance has to be measured at the same point, where the voltage is measured by the LMG. The advantage is, that you can measure for example from a cabinet and that the copper resistance of the wiring is included and by this eliminated from the calculation.

The results of torque () and speed () can be displayed in a user defined menu or transfered via an interface.

A typical script could look like this:

```
# M-n-calculation
# Detailed motor description
# 2.2kW Motor DDA 90 L
# Input of the motor parameters
```

```
$cn=0.84; # Nominal powerfactor
$nn=2845; # Nominal speed 1/min
$pz=2; # Number of poles
    # (2* pole pairs)
$jn=4.66; # Nominal current in A
$un=400; # Nominal L-L voltage in V
$pn=2200; # Nominal output power in W
$fn=50; # Nominal frequency in Hz
$rk=19.7; # resistor in Ohm
    # terminal to terminal
    # (hot resistor)
$mk=20; # No load torque
M.Nm=torque($pn,$fn,$un,$jn,$cn,$pz,$rk,15,mk);
n=speed($pn, $nn,$fn,$un,$jn,$cn,$pz,$rk, 15,mk);
```


No load torque correction

Set $\mathrm{mk}=0$, enter all other data and make a no load measurement of the motor. Use the read out torque with opposite sign as new value for mk. By this tolerances of the motor nominal values are corrected.

4.4.5 Saving and restoring configurations

You can save up to 8 different set-ups for the instrument. With Reset you get the factory settings. Everything is reset, but not the 8 stored configurations.

4.4.5.1 Loading a configuration

After pressing Save/Recall you can load previously saved configurations. For this purpose choose the wanted one with the rotary knob and press Recll. All set-up values like range settings, scripts and measuring settings are restored. The actual settings are lost.

In the field 'Active configuration mod()' you see now the name of the selected configuration. If $\bmod \left({ }^{*}\right)$ is displayed, any of the settings are changed.

4.4.5.2 Saving the configuration

After pressing Save/Recall you can save the actual configuration. For this purpose choose the wanted position with the rotary knob and press Save. Now you have to specify a name for this entry (see chapter 4.5, 'Entering identifiers, characters and text'). If the entry exists, it will be overwritten. All setup values like range settings, scripts and measuring settings are saved.

4.5 Entering identifiers, characters and text

In some menus (e.g. in the plot menu or in the menu for the digital outputs) you have to enter an identifier or text to specify which value should be worked with (e.g. plotted).

If the cursor is at the first position and you press \leftarrow, the complete input field will be deleted.

If you have pressed the softkey to modify the identifier or text, you can either enter the desired value by moving the rotary knob (Mode has to be set to copy!) to the wished letter and press Enter or the rotary knob. In this case you have to enter the letters in the same way you see them in the menus (e.g. 'Utrms'). Or you can press the key of any valid menu (e.g. Voltage, Current, ...) and you get a list of the available values (in this mode).

Following values are available in the different menus:

Normal measuring mode

Default	Current	Voltage	Power	Int. Value	Measure	Custom	Misc.	IF/IO
f	f	f	f	q	Aver	Env	abs()	Ain
Iac	Iac	OvrU	P	EP	DisCyc	var0-11	$\operatorname{acos}()$	DigFrq
Icf	Icf	Uac	PF	EQ	Cycle		$\operatorname{asin}()$	Zero
Idc	Idc	Ucf	PHI	Et	Mtime		bell()	
Iden	Iden	Udc	Q	ES	Rcyc		$\cos ()$	
Idcp	Idcp	Udcn	Rser	tsec			digin()	
Itrms	Itrms	Udcp	S	Pm			dout_on()	
Iff	Iff	Utrms	Xser	Qm			dout_off()	
Iinr	Iinr	Uff	Z	Sm			freeze()	
Iphi	Iphi	Uphi					isrun()	
Ipkn	Ipkn	Upkn					isstop()	
Ipkp	Ipkp	Upkp					$\log ()$	
Ipp	Ipp	Upp					$\ln ()$	
Irect	Irect	Urect					reset()	
RngI	RngI	RngU					scale_i()	
Iscal	Iscal	Uscal					scale_u()	
Env	OvrI						$\sin ()$	
OvrI							sqrt()	
OvrU							start()	
P							stop()	
PF							unfreeze()	
PHI							if();fi	
Q							2.7182818 (e)	
Rser							$3.1415927(\pi)$	
S							$1.2566 \mathrm{e}-6\left(\mu_{0}\right)$	
Uac							$8.854 \mathrm{e}-12\left(\varepsilon_{0}\right)$	
Ucf								
Udc								
Uden								
Udcp								
Utrms								
Uff								
Uphi								
Upkn								
Upkp								

Default	Current	Voltage	Power	Int. Value	Measure	Custom	Misc.	IF/IO
Upp								
Urect								
RngU								
Uscal								
var0-11								
Xser								
Z								

CE-Harm Harmonic measuring mode

Default	Current	Voltage	Power	Measure	Custom	Misc.	IF/IO
f	f	f	f	Per	Env	abs()	Ain
Ih	Ih	Uh	Ph	Mtime	var0-11	$\operatorname{acos}()$	DigFrq
Imav	Imav	Uthd	Pav			$\operatorname{asin}()$	Zero
Iav	Iav	UL	PFm			bell()	
Ifm	Ifm	UMax	Qh			$\cos ()$	
Ithd	Ithd	UP	Sh			digin()	
IL	IL	OvrU	P			dout_on()	
Im	Im	Utrms	PF			dout_off()	
IP	IP	RngU	Q			freeze()	
Ipohl	Ipohl		Rser			isrun()	
Ph	Ipohc		S			isstop()	
Pav	Ithc		Xser			$\log ()$	
PFm	Itrms		Z			$\ln ()$	
Ipohc	RngI					reset()	
Qh	Iscal					scale_i()	
Sh	OvrI					scale_u()	
Ithc						$\sin ()$	
Uh						sqri()	
Uthd						start()	
UL						stop()	
UMax						unfreeze()	
UP						if();fi	
Itrms						2.7182818 (e)	
RngI						3.1415927 (π)	
Iscal						$1.2566 \mathrm{e}-6\left(\mu_{0}\right)$	
Env						$8.854 \mathrm{e}-12\left(\varepsilon_{0}\right)$	
OvrI							
OvrU							
P							
PF							
Q							
Rser							
S							
Utrms							
RngU							

Default	Current	Voltage	Power	Measure	Custom	Misc.	IF/IO
Uscal							
var0-11							
Xser							
Z							

CE Flicker measuring mode

Default	Current	Voltage	Power	Int. Value	Measure	Custom	Misc.	IF/IO
Uhwcf	f	Uhwcf	Phw	Uhwcf	Per	Env	abs()	Ain
dcl	dcs	dcl	f	dcl	Mtime	var0-11	$\operatorname{acos}()$	DigFrq
dtl	dts	dtl	P	dmaxl	FlkPer		$\operatorname{asin}()$	Zero
dmaxl	dmaxs	dmaxl	PF	Pltl			bell()	
Pltl	Plts	Pltl	Q	Pmoml			$\cos ()$	
Pmoml	Pms	Pmoml	Rser	Pstl			digin()	
Pml	Pmoms	Pml	S	Upkph			dout_on()	
Phw	Uhws	Phw	Xser				dout_off()	
Uhwl	Psts	Uhwl	Z				freeze()	
Pstl	Ithd	Pstl					isrun()	
Upkph	Itrms	Upkph					isstop()	
f	RngI	f					$\log ()$	
dcs	Iscal	Uthd					$\ln ()$	
dts	OvrI	OvrU					reset()	
dmaxs		Utrms					scale_i()	
Plts		RngU					scale_u()	
Pms		Uscal					$\sin ()$	
Pmoms							sqrt()	
Uhws							start()	
Psts							stop()	
Ithd							unfreeze()	
Uthd							if();fi	
Itrms							$2.7182818(e)$	
RngI							$3.1415927(\pi)$	
Iscal							$1.2566 \mathrm{e}-6\left(\mu_{0}\right)$	
Env							$8.854 \mathrm{e}-12\left(\varepsilon_{0}\right)$	
OvrI								
OvrU								
P								
PF								
Q								
Rser								
S								
Utrms								
RngU								
Uscal								
var0-11								
Xser								

HARM100 measuring mode

Default	Current	Voltage	Power	Measure	Custom	Misc.	IF/IO
D	f	f	D	Per	Env	abs()	Ain
f	Ih	Uh	f	Mtime	var0-11	acos()	DigFrq
Ih	Ithd	Uthd	Ph			asin()	Zero
Ithd	IP	UP	Qh			bell()	
IP	Itrms	Utrms	Sh			cos()	
Ph	RngI	RngU	P			digin()	
Qh	Iscal	Uscal	PF			dout_on()	
Sh	OvrI	OvrU	Q			dout_off()	
Uh			Rser			freeze()	
Uthd			S			isrun()	
UP			Xser			isstop()	
Itrms			Z			log()	
RngI						ln()	
Iscal						reset()	
Env						scale_i()	
OvrI						scale_u()	
OvrU						sin()	
P						sqrt()	
PF						start()	
Q							stop()
Rser						unfreeze()	
S						if();fi	
Utrms							
RngU							
Uscal							
var0-11							
Xser							
Z							

Select one value with the rotary knob and press Enter or the rotary knob to copy the list item into the edit line. If you have a multi channel value (e.g. analogue inputs) you have to enter a ' \because ' behind this value and then the number of the channel (e.g. the identifier for the analogue input 3 would be 'Ain: 3 '). If you don't specify this number, ' 1 ' is the default value. Confirm your choice with Enter.

If the value is an array value, the desired index is entered in brackets '[' and ']' (example the $5^{\text {th }}$ harmonic of the voltage would be Uh[5]). You can also combine this values: Uh:2[5] would be the $5^{\text {th }}$ harmonic of the voltage of the second channel. If you don't specify this number, ' 0 ' is the default value. Confirm your choice with Enter.

To select another position in the text, you have to set Mode to 'move' or 'line'. With 'move' you move character by character, with 'line' you move line by line, which is much faster in bigger text.

With new line you can insert a linefeed (if you have a multi line input box). Especially in conjunction with the script editor you can reach a list of useful functions and operators by pressing Misc.

Finally close you inputs with End.

4.6 Entering numerical values

If you have entered a value by the numerical keypad and move the cursor to the right end and move the rotary knob to the right then the modifiers ' μ ', 'm', ' k ' and ' M ' appear. So it is more simple to enter big or small values.

5 Normal measuring mode

In the normal measuring mode the LMG500 works as a power meter. The voltage, current and power are measured directly, many other values are derived from these values.

5.1 Measuring configuration (Measuring)

When you have come to this menu by pressing Measure you first have to choose Norm(a)I to enter this mode. With the rotary knob you can select three tabs ('Globals', 'Group A', 'Group $\mathrm{B}^{\prime}, \ldots$... Pressing the rotary knob you can do several settings in each tab.

5.1.1 Globals tab

Here you setup all values which are global to the instrument (independent from the groups).
Cycle Here the cycle time in seconds is defined. Valid values are from 0.05 s to 60s. Any value in steps of 10 ms is allowed. A value of 0 ms defines the external cycle time. During every cycle time the values of voltage, current and power are measured. At the end of each interval the measured values are computed to the displayed values. The cycle time has always to be bigger or same like the (fundamental or basic) period time of the signal.

Aver Here you can setup, how many measuring cycles are averaged for the display. For example: If you choose 5 cycles, the display will always be averaged over the last 5 cycles (sliding average!).

Wire Here you can setup, with which wiring you want to measure. Please see chapter 2.4, 'The group concept' for further details.

Aron This point is only available when you have chosen wiring ' $2+0$ Channels', ' $2+1$ Channels', ‘ $2+2$ Channels'.
If you connect a 3 phase 3 wire system in aron circuit (see chapter 3.3.5, 'Measuring circuit for measuring efficiency of $3 / 3$ phase systems') you have to measure the voltages U_{12} and U_{32}. U_{31} is calculated by the instrument. But usually you would use the three voltages U_{12}, U_{23} and U_{31}. So you measure U_{32} instead of U_{23} with $U_{23}=-U_{32}$. For most values this does not matter, but in the scope display, you would see, that U_{32} has not 120° against U_{12} but 60°. This is physically correct (you see the voltages connected to the instrument), but this is not what you expected. So if you switch the Aron setting to 'on' the display of U_{32} is inverted, so that you see U_{23}.
Only in the case you have a real 2 phase 3 wire system, you should set Aron to 'off'
to see the real phase shift between the phases.
The voltage measured with the third channel is also inverted.
If you have a master/slave configuration, the settings 'Aron' and 'Wire' can be done for each instrument independently

5.1.2 Group A/B/C/D tab

The settings in the groups are identical, so they are just described once. Each setting influences all channels which belong to the group!

First the coupling settings for the synchronisation signal:
Sync Selects the signal which is used for synchronisation of all channels belonging to this group. There are following possible settings:
Un The voltage signal is used (n is one of the channels in the group)
In The current signal is used (n is one of the channels in the group)
Line The line signal is used
Extn The signal at the external synchronisation jack is used.
SyClamp The signal from an external synchronisation clamp is used accessory L50-Z19

Demod Selects the demodulator for the AM demodulation of the synchronisation signal.
off No AM demodulation
$<1 \mathrm{kHz}$ Demodulation for signals with carrier $<1 \mathrm{kHz}$ (like rapid fire control)
$>1 \mathrm{kHz}$ Demodulation for signals with carrier $>1 \mathrm{kHz}$ (like electronic lamp balasts)
HP Selects a high pass filter for the synchronisation signal.
off No filter selected
$>0.5 \mathrm{~Hz}$ Signals $>0.5 \mathrm{~Hz}$ are used
$>30 \mathrm{~Hz}$ Signals $>30 \mathrm{~Hz}$ are used
LP Selects a low pass filter for the synchronisation signal.
off No filter selected
If you select another value, a low pass filter with respective frequency is used.
Following values are possible:
$5 \mathrm{~Hz}, 10 \mathrm{~Hz}, 20 \mathrm{~Hz}, 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}, 20 \mathrm{kHz}$, 50 kHz .

Now the settings for the measured signal:
Filt Here you can switch on/off the lowpass filters in the measuring signal path of voltage and current. This filters are only in the signal way (they influence the sampling values) and don't influence the synchronisation settings. Possible settings are:
$270 \mathrm{kHz}, 150 \mathrm{kHz}, 138 \mathrm{kHz}, 90 \mathrm{kHz}, 42 \mathrm{kHz}, 30 \mathrm{kHz}, 21 \mathrm{kHz}, 11 \mathrm{kHz}, 10 \mathrm{kHz}, 9.2 \mathrm{kHz}$, $6 \mathrm{kHz}, 2.8 \mathrm{kHz}, 2 \mathrm{kHz}, 1.4 \mathrm{kHz}, 700 \mathrm{~Hz}, 350 \mathrm{~Hz}, 175 \mathrm{~Hz}, 87.5 \mathrm{~Hz}, 60 \mathrm{~Hz}, 30 \mathrm{~Hz}$

S-Cpl Here you define the signal coupling. This setting has no influence to the trigger signal! Possible settings are:
$\mathrm{AC}+\mathrm{DC}$: All parts of the signal are taken into calculation.
AC Only the AC parts of the signal are taken into calculation. The DC part is separated. Please note, that this separation is done by software after the measuring and not by hardware! So you don't have any advantages concerning the measuring range and no influence to the scope values. The advantage of this coupling mode is the better uncertainty, because all DC errors are eliminated.

Figure 22: Measuring menu in normal mode

5.1.3 Ev. AB/CD tab (option L50-05)

Here the transient trigger is setup. For the channels 1-4 as well as 5-8 you can define up to 4 transient events. If the entered conditions are met and a global event is generated, the sample values of the scope function are freezed. The standard values are measured continuously.

Figure 23: Measuring menu, transient settings

Set Is used to change the values. Further on you have to select the transient T1 to T4 (also called an event channel). Now you have following softkeys available:
Src: This selects the signal which should be observed.
Func This selects, what should be observed at this signal:
<low. limit >upp. limit
Window Out (<low. limit or >upp. limit)
Window In (>low. limit and <upp. limit)
Up Defines the upper limit. The unit is V , A or W depending on the signal.
Low Defines the lower limit. The unit is V , A or W depending on the signal.
Dur. Defines how long the function has to be met, before this channel notifies an event.

Cond. This defines, how an event channel is handled:
off: No action
and: A global event is generated, if all event channels with 'and' condition have an event
or: A global event is generated if this event channel is true.
Run Starts the search for a new transient. The search can only be performed, if all measuring channels of all groups are set to manual!

Stop Stopps the search

5.2 Measuring ranges (Range)

When you came to this menu by pressing Range you can setup all the ranges and scalings for the different measuring channels. You see three tabs ('Group A', 'Group B', ... and 'Sense/More').

Figure 24: Range menu

5.2.1 Group A/B tab

The settings in group A and B are identical, so they are just described once.
With the keys $F 1($ <-) and $F 3(->)$ beside the rotary knob, you can select another U/I channel. With the rotary knob itself, you can select another range within the selected channel.
$\mathbf{A} / \mathbf{M} \quad$ With \mathbf{A} / \mathbf{M} the automatic or manual range setting is selected. This is only possible in the normal measuring mode. In all other modes the manual range is selected.

Sel.Input By this you can select the jack which should be used as input jack for this channel.
Scale The Scale button allows you to enter a scaling factor. With this scaling factor all values of this channel (and the power) are multiplied. This setting is usually used to enter the transformer ratio of current clamps or voltage transformers.
Example 1:
You have a current clamp with $1000 \mathrm{~A} / 1 \mathrm{~A}$ ratio. In this case enter 1000 as scaling factor.
Example 2:
You have a current clamp with $1 \mathrm{~A} / 10 \mathrm{mV}$ ratio. This is equal to $100 \mathrm{~A} / \mathrm{V}$, so you have to enter 100 as scaling.

Adapt By this you force all channels of this group to work with the same settings like the actual one. If the actual one works in automatic mode all other work also in automatic mode. In manual mode all channels get the same range.
Please note, that the scaling is not adapted! The reason is, that sometimes the scaling factor is used to adjust an external sensor. If the scaling would also be adapted, the adjustment would be lost.

By pressing the rotary knob again you leave the set mode and can select another tab.

Some notes for auto ranging

There are some special points you have to know, when using the auto range function:

- If you want to measure a single peak value never use the auto range function. The reason for this is, that the autorange function does not detect a too low range until it is overloaded! When it is overloaded and the range is changed, the last measurement might be invalid.
- Do not use the auto range function for very precise measurements. While a measurement you don't directly see which range is actually selected. Afterwards it is not possible to say what was the selected range and therefore you can't make an uncertainty calculation.
- Do not use the autorange function for measurings without gaps (e.g. energy, harmonics or flicker). The reason for this is the setup time of the measuring channels after a range change.

5.2.2 Sense/More tab

Here you get information about the connected external current sensors. If they are connected, you get automatically a new list of current ranges (depending on the connected sensor).

5.2.3 Delay

In this menu, the group delay of an external sensor can be adjusted.

Figure 25: Delay menu
With Udly and Idly you can compensate the group delay of external wires and sensors. With positive values the signal is delayed, with negative values it is negative delayed (so it becomes faster!)

Example: You have a voltage sensor with a group delay of +150 ns . If you want to correct this group delay, you have to set the voltage delay to -150ns.

While changeing the U-delay or I-delay you can see the actual measured power and power factor. This can help to estimate the group delay of an external system, if this is unknown from other sources.

5.3 Definition of measuring values

Following you find the definitions for all measuring values in the normal operation mode. The values are divided in two sections:

- The values from single measuring are measured while one measuring cycle and are independent from all other measuring cycles.
- The integrated values are calculated over several cycles.

The following basic definitions are used:
$u(t) \quad$ The instantaneous value if the voltage used for calculation
$\mathrm{i}(\mathrm{t})$ The instantaneous value if the current used for calculation
T The time of an integer number of the periods of the synchronisation signal. The integer factor depends on the chosen measuring cycle time. This time can vary from cycle to cycle! T is the real measuring time.

The values $u(t)$ and $i(t)$ used for calculation can be the directly in channel n measured values $\mathrm{u}_{\mathrm{n}}(\mathrm{t}) / \mathrm{i}_{\mathrm{n}}(\mathrm{t})$ or calculated from them (depending on the wiring and the selected display channel):

Wiring ' $1+0$ Channels' (1 channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$

Wiring '2+0 Channels' ($\mathbf{2}$ channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$
9	$-\mathrm{u}_{1}(\mathrm{t})+\mathrm{u}_{2}(\mathrm{t})$	$-\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})$

Wiring ' $1+1$ Channels' ($\mathbf{2}$ channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$

Wiring '3+0 Channels' (3 channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$

Wiring ' $2+1$ Channels' ($\mathbf{3}$ channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$
9	$-\mathrm{u}_{1}(\mathrm{t})+\mathrm{u}_{2}(\mathrm{t})$	$-\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})$

Wiring '4+0 Channels' (4 channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$
4	$\mathrm{u}_{4}(\mathrm{t})$	$\mathrm{i}_{4}(\mathrm{t})$

Wiring '3+1 Channels' (4 channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$
4	$\mathrm{u}_{4}(\mathrm{t})$	$\mathrm{i}_{4}(\mathrm{t})$

Wiring ' $2+2$ Channels' ($\mathbf{4}$ channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$
4	$\mathrm{u}_{4}(\mathrm{t})$	$\mathrm{i}_{4}(\mathrm{t})$
9	$-\mathrm{u}_{1}(\mathrm{t})+\mathrm{u}_{2}(\mathrm{t})$	$-\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})$
10	$-\mathrm{u}_{3}(\mathrm{t})+\mathrm{u}_{4}(\mathrm{t})$	$-\mathrm{i}_{3}(\mathrm{t})-\mathrm{i}_{4}(\mathrm{t})$

For further information about the tables see also chapter 2.4, 'The group concept'.

Linked values

If you have installed the option L50-O6 (star to delta conversion) you get the following additional wirings. The values in the column 'Measuring channel numbers' define the internal calculation of the DSPs (the numbers are the numbers of the measuring channels!!). The column 'Circuit number' defines the physical values of your circuit. This relations are correct, if you connect your instrument in the correct way. For this refer to the measuring circuit chapter below each table.

Figure 26: Allocation of the different linked values

Please not also the hints and restrictions given in 2.5, 'Linked values, star to delta conversion (option L50-O6)'

Wiring ' $3+0, U^{*}{ }^{*}=>\mathbf{U} \Delta I \Delta^{\prime}$ ' (3 channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$	U 1	I 1
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$	U 2	I 2
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$	U 3	I 3
9	$\mathrm{u}_{1}(\mathrm{t})-\mathrm{u}_{2}(\mathrm{t})$	$\frac{\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})}{3}$	U 12	I 12
10	$\mathrm{u}_{2}(\mathrm{t})-\mathrm{u}_{3}(\mathrm{t})$	$\frac{\mathrm{i}_{2}(\mathrm{t})-\mathrm{i}_{3}(\mathrm{t})}{3}$	U 23	I 23
11	$\mathrm{u}_{3}(\mathrm{t})-\mathrm{u}_{1}(\mathrm{t})$	$\frac{\mathrm{i}_{3}(\mathrm{t})-\mathrm{i}_{1}(\mathrm{t})}{3}$	U31	I 31

For circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'

Wiring ' $3+\mathbf{0}, \mathrm{U} \Delta I^{*}->\mathbf{U} \Delta I \Delta$ ' (3 channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$	U 12	I 1
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$	U 23	I 2
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$	U 31	I 3
9	$\mathrm{u}_{1}(\mathrm{t})$	$\frac{\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})}{3}$	U 12	I 12
10	$\mathrm{u}_{2}(\mathrm{t})$	$\frac{\mathrm{i}_{2}(\mathrm{t})-\mathrm{i}_{3}(\mathrm{t})}{3}$	U23	I 23
11	$\mathrm{u}_{3}(\mathrm{t})$	$\frac{\mathrm{i}_{3}(\mathrm{t})-\mathrm{i}_{1}(\mathrm{t})}{3}$	U31	I 31

For circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'

Wiring ' $3+0, U \Delta I^{*}->U^{\star}{ }^{\star}$ ’ (3 channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$		$\mathrm{i}(\mathrm{t})$	U
I				
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$	U 12	I 1
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$	U 23	I 2
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$	U 31	I 3
9	$\frac{\mathrm{u}_{1}(\mathrm{t})-\mathrm{u}_{3}(\mathrm{t})}{3}$	$\mathrm{i}_{1}(\mathrm{t})$	U 1	I 1
10	$\frac{\mathrm{u}_{2}(\mathrm{t})-\mathrm{u}_{1}(\mathrm{t})}{3}$	$\mathrm{i}_{2}(\mathrm{t})$	U 2	I 2
11	$\frac{\mathrm{u}_{3}(\mathrm{t})-\mathrm{u}_{2}(\mathrm{t})}{3}$	$\mathrm{i}_{3}(\mathrm{t})$	U 3	I 3

For circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'

Wiring ' $3+1,\left.U^{\star}\right|^{\star}->\mathrm{U} \Delta I \Delta^{\prime}$ (4 channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$	U 1	I 1
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$	U 2	I 2
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$	U 3	I 3
4	$\mathrm{u}_{4}(\mathrm{t})$	$\mathrm{i}_{4}(\mathrm{t})$	U 4	I 4

	Measuring channel $n u m b e r s ~$		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
9	$\mathrm{u}_{1}(\mathrm{t})-\mathrm{u}_{2}(\mathrm{t})$	$\frac{\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})}{3}$	U12	I 12
10	$\mathrm{u}_{2}(\mathrm{t})-\mathrm{u}_{3}(\mathrm{t})$	$\frac{\mathrm{i}_{2}(\mathrm{t})-\mathrm{i}_{3}(\mathrm{t})}{3}$	U 23	I 23
11	$\mathrm{u}_{3}(\mathrm{t})-\mathrm{u}_{1}(\mathrm{t})$	$\frac{\mathrm{i}_{3}(\mathrm{t})-\mathrm{i}_{1}(\mathrm{t})}{3}$	U31	I 31

For circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'

Wiring ' $3+1, \mathrm{U} \Delta{ }^{\star}$ * $>\mathrm{U} \Delta \Delta \Delta^{\prime}$ (4 channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$	U 12	I 1
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$	U 23	I 2
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$	U 31	I 3
4	$\mathrm{u}_{4}(\mathrm{t})$	$\mathrm{i}_{4}(\mathrm{t})$	U 4	I 4
9	$\mathrm{u}_{1}(\mathrm{t})$	$\frac{\mathrm{i}_{1}(\mathrm{t})-\mathrm{i}_{2}(\mathrm{t})}{3}$	U 12	I 12
10	$\mathrm{u}_{2}(\mathrm{t})$	$\frac{\mathrm{i}_{2}(\mathrm{t})-\mathrm{i}_{3}(\mathrm{t})}{3}$	U 23	I 23
11	$\mathrm{u}_{3}(\mathrm{t})$	$\frac{\mathrm{i}_{3}(\mathrm{t})-\mathrm{i}_{1}(\mathrm{t})}{3}$	U31	I 31

For circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'

Wiring ' $3+1, \mathrm{U} \Delta I^{\star}->\mathrm{U}^{\star{ }^{\star} \text { ’ (}} \mathbf{(4 \text { channel }}$ instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
1	$\mathrm{u}_{1}(\mathrm{t})$	$\mathrm{i}_{1}(\mathrm{t})$	U 12	I 1
2	$\mathrm{u}_{2}(\mathrm{t})$	$\mathrm{i}_{2}(\mathrm{t})$	U 23	I 2
3	$\mathrm{u}_{3}(\mathrm{t})$	$\mathrm{i}_{3}(\mathrm{t})$	U 31	I 3
4	$\mathrm{u}_{4}(\mathrm{t})$	$\mathrm{i}_{4}(\mathrm{t})$	U 4	I 4
9	$\frac{\mathrm{u}_{1}(\mathrm{t})-\mathrm{u}_{3}(\mathrm{t})}{3}$	$\mathrm{i}_{1}(\mathrm{t})$	U 1	I 1
10	$\frac{\mathrm{u}_{2}(\mathrm{t})-\mathrm{u}_{1}(\mathrm{t})}{3}$	$\mathrm{i}_{2}(\mathrm{t})$	U 2	I 2

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
11	$\frac{\mathrm{u}_{3}(\mathrm{t})-\mathrm{u}_{2}(\mathrm{t})}{3}$	$\mathrm{i}_{3}(\mathrm{t})$	U 3	I 3

For circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L50-O6)'
For further information about the tables see also chapter 2.5, 'Linked values'.

5.3.1 More than 4 power measuring channels

If you connect a 2 nd LMG500 or an extension box to the basic instrument, you can use up to 4 additional power measuring channels. If you have an instrument with up to 8 channels, it is internally the same like a 4 channel instrument and a second one. This additional channels are placed in the groups ' C ' and ' D '. In principle for the second unit you have the same wiring selections:

Wiring ' $1+0$ Channels' (1 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$

Wiring ' $2+0$ Channels' (2 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$
12	$-\mathrm{u}_{5}(\mathrm{t})+\mathrm{u}_{6}(\mathrm{t})$	$-\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})$

Wiring ' $1+1$ Channels' (2 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$

Wiring ' $3+0$ Channels' (3 extention channel instruments only)

Display channel	$\mathrm{u}^{(\mathrm{t})}$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$

Wiring ' $2+1$ Channels' (3 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$
12	$-\mathrm{u}_{5}(\mathrm{t})+\mathrm{u}_{6}(\mathrm{t})$	$-\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})$

Wiring '4+0 Channels' (4 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$
8	$\mathrm{u}_{8}(\mathrm{t})$	$\mathrm{i}_{8}(\mathrm{t})$

Wiring ' $3+1$ Channels' (4 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$
8	$\mathrm{u}_{8}(\mathrm{t})$	$\mathrm{i}_{8}(\mathrm{t})$

Wiring ' $\mathbf{2 + 2}$ Channels' (4 extention channel instruments only)

Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$
8	$\mathrm{u}_{8}(\mathrm{t})$	$\mathrm{i}_{8}(\mathrm{t})$
12	$-\mathrm{u}_{5}(\mathrm{t})+\mathrm{u}_{6}(\mathrm{t})$	$-\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})$
13	$-\mathrm{u}_{7}(\mathrm{t})+\mathrm{u}_{8}(\mathrm{t})$	$-\mathrm{i}_{7}(\mathrm{t})-\mathrm{i}_{8}(\mathrm{t})$

Wiring ' $3+0, U^{\star} I^{\star}->\mathbf{U} \Delta I \Delta^{\prime}$ (3 extention channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$	U 1	I 1
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$	U 2	I 2
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$	U 3	I 3
12	$\mathrm{u}_{5}(\mathrm{t})-\mathrm{u}_{6}(\mathrm{t})$	$\frac{\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})}{3}$	U 12	I 12

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
13	$\mathrm{u}_{6}(\mathrm{t})-\mathrm{u}_{7}(\mathrm{t})$	$\frac{\mathrm{i}_{6}(\mathrm{t})-\mathrm{i}_{7}(\mathrm{t})}{3}$	U23	I23
14	$\mathrm{u}_{7}(\mathrm{t})-\mathrm{u}_{5}(\mathrm{t})$	$\frac{\mathrm{i}_{7}(\mathrm{t})-\mathrm{i}_{5}(\mathrm{t})}{3}$	U31	I31

Wiring ' $3+0, U \Delta I^{\star}->\mathbf{U} \Delta I \Delta^{\prime}$ (3 extention channel instruments only)

	Measuring channel numbers			Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I	
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$	U 12	I 1	
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$	U 23	I 2	
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$	U 31	I 3	
12	$\mathrm{u}_{5}(\mathrm{t})$	$\frac{\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})}{3}$	U 12	I 12	
13	$\mathrm{u}_{6}(\mathrm{t})$	$\frac{\mathrm{i}_{6}(\mathrm{t})-\mathrm{i}_{7}(\mathrm{t})}{3}$	U 23	I 23	
14	$\mathrm{u}_{7}(\mathrm{t})$	$\frac{\mathrm{i}_{7}(\mathrm{t})-\mathrm{i}_{5}(\mathrm{t})}{3}$	U 31	I 31	

Wiring ‘ $3+0, \mathbf{U} \Delta I^{\star}->U^{\star} I^{\star}$ ’ (3 extention channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$		$\mathrm{i}(\mathrm{t})$	U
I				
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$	U 12	I 1
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$	U 23	I 2
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$	U 31	I 3
12	$\frac{\mathrm{u}_{5}(\mathrm{t})-\mathrm{u}_{7}(\mathrm{t})}{3}$	$\mathrm{i}_{5}(\mathrm{t})$	U 1	I 1
13	$\frac{\mathrm{u}_{6}(\mathrm{t})-\mathrm{u}_{5}(\mathrm{t})}{3}$	$\mathrm{i}_{6}(\mathrm{t})$	U 2	I 2
14	$\frac{\mathrm{u}_{7}(\mathrm{t})-\mathrm{u}_{6}(\mathrm{t})}{3}$	$\mathrm{i}_{7}(\mathrm{t})$	U 3	I 3

Wiring ‘ $3+1, U^{\star} I^{*}->\mathrm{U} \Delta I \Delta$ ' (4 extention channel instruments only)

	Measuring channel $n u m b e r s ~$		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$	U 1	I 1
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$	U 2	I 2
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$	U 3	I 3
8	$\mathrm{u}_{8}(\mathrm{t})$	$\mathrm{i}_{8}(\mathrm{t})$	U 4	I 4
12	$\mathrm{u}_{5}(\mathrm{t})-\mathrm{u}_{6}(\mathrm{t})$	$\frac{\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})}{3}$	U 12	I 12
13	$\mathrm{u}_{6}(\mathrm{t})-\mathrm{u}_{7}(\mathrm{t})$	$\frac{\mathrm{i}_{6}(\mathrm{t})-\mathrm{i}_{7}(\mathrm{t})}{3}$	U 23	I 23
14	$\mathrm{u}_{7}(\mathrm{t})-\mathrm{u}_{5}(\mathrm{t})$	$\frac{\mathrm{i}_{7}(\mathrm{t})-\mathrm{i}_{5}(\mathrm{t})}{3}$	U 31	I 31

Wiring ' $3+1, \mathrm{U} \Delta \mathrm{I}^{\star}->\mathrm{U} \Delta I \Delta^{\prime}$ (4 extention channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$	U 12	I 1
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$	U 23	I 2
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$	U 31	I 3
8	$\mathrm{u}_{8}(\mathrm{t})$	$\mathrm{i}_{8}(\mathrm{t})$	U 4	I 4
12	$\mathrm{u}_{5}(\mathrm{t})$	$\frac{\mathrm{i}_{5}(\mathrm{t})-\mathrm{i}_{6}(\mathrm{t})}{3}$	U 12	I 12
13	$\mathrm{u}_{6}(\mathrm{t})$	$\frac{\mathrm{i}_{6}(\mathrm{t})-\mathrm{i}_{7}(\mathrm{t})}{3}$	U 23	I 23
14	$\mathrm{u}_{7}(\mathrm{t})$	$\frac{\mathrm{i}_{7}(\mathrm{t})-\mathrm{i}_{5}(\mathrm{t})}{3}$	U 31	I 31

Wiring ‘ $3+1, U \Delta I^{\star}->U^{\star} I^{*}$ ’ (4 extention channel instruments only)

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
5	$\mathrm{u}_{5}(\mathrm{t})$	$\mathrm{i}_{5}(\mathrm{t})$	U 12	I 1
6	$\mathrm{u}_{6}(\mathrm{t})$	$\mathrm{i}_{6}(\mathrm{t})$	U 23	I 2
7	$\mathrm{u}_{7}(\mathrm{t})$	$\mathrm{i}_{7}(\mathrm{t})$	U 31	I 3
8	$\mathrm{u}_{8}(\mathrm{t})$	$\mathrm{i}_{8}(\mathrm{t})$	U 4	I 4
12	$\frac{\mathrm{u}_{5}(\mathrm{t})-\mathrm{u}_{7}(\mathrm{t})}{3}$	$\mathrm{i}_{5}(\mathrm{t})$	U 1	I 1

	Measuring channel numbers		Circuit numbers	
Display channel	$\mathrm{u}(\mathrm{t})$	$\mathrm{i}(\mathrm{t})$	U	I
13	$\frac{\mathrm{u}_{6}(\mathrm{t})-\mathrm{u}_{5}(\mathrm{t})}{3}$	$\mathrm{i}_{6}(\mathrm{t})$	U 2	I 2
14	$\frac{\mathrm{u}_{7}(\mathrm{t})-\mathrm{u}_{6}(\mathrm{t})}{3}$	$\mathrm{i}_{7}(\mathrm{t})$	U 3	I 3

5.3.2 Values from single measuring

Voltage and current

true root mean square: \quad Utrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^{2} d t} \quad$ Itrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^{2} d t}$

DCn negative DC component:

$$
U d c n=\frac{1}{T} \int_{t=0}^{T}\left\{\begin{array}{c}
u(t) \text { for } u(t)<0 \\
0 \text { for } u(t) \geq 0
\end{array}\right\} d t \quad \quad I d c n=\frac{1}{T} \int_{t=0}^{T}\left\{\begin{array}{c}
i(t) \text { for } i(t)<0 \\
0 \text { for } i(t) \geq 0
\end{array}\right\} d t
$$

DCp positive DC component:

$$
U d c p=\frac{1}{T} \int_{t=0}^{T}\left\{\begin{array}{c}
u(t) \text { foru }(t) \geq 0 \\
0 \text { foru }(t)<0
\end{array}\right\} d t \quad \quad I d c p=\frac{1}{T} \int_{t=0}^{T}\left\{\begin{array}{c}
i(t) \text { for }(t) \geq 0 \\
0 \text { for }(t)<0
\end{array}\right\} d t
$$

DC component:

$$
U d c=\frac{1}{T} \int_{t=0}^{T} u(t) d t
$$

$I d c=\frac{1}{T} \int_{t=0}^{T} i(t) d t$

AC component:

$$
U a c=\sqrt{U t r m s^{2}-U d c^{2}}
$$

$$
I a c=\sqrt{I t r m s^{2}-I d c^{2}}
$$

peak-peak value:

$$
U p p=\max (u(t))-\min (u(t))
$$

$I p p=\max (i(t))-\min (i(t))$
rectified value:

$$
\text { Urect }=\frac{1}{T} \int_{t=0}^{T}|u(t)| d t
$$

Irect $=\frac{1}{T} \int_{t=0}^{T}|i(t)| d t$
crest factor:

$$
U c f=\frac{U p k}{U t r m s}
$$

$$
I c f=\frac{I p k}{I t r m s}
$$

form factor:

$$
U f f=\frac{U t r m s}{U r e c t}
$$

$$
I f f=\frac{I t r m s}{\text { Irect }}
$$

Inrush current:

$$
\operatorname{Iinr}=\max (|i(t)|)
$$

Power

active power:

$$
P=\frac{1}{T} \int_{t=0}^{T} u(t) i(t) d t
$$

reactive power	$Q=\sqrt{S^{2}-P^{2}}$
apparent power:	$S=U t r m{ }^{*}$ Itrms
power factor:	$P F=\lambda=\frac{\|P\|}{S}$

Behind the power factor might be a ' i ' or ' c ' showing, that the load is inductive or capacitive. This decision is only done under following conditions:

$$
\lambda<0.999 \text { and } 1.05<\text { Uff }<1.2 \text { and } 1.05<\text { Iff }<1.2 \text { and } f<30 \mathrm{kHz}
$$

This means, that voltage and current are nearly sinusoidal. In all other cases there is neither 'i' nor 'c'.

Please note: The i / c indication was developed for usual line applications. When the usage of the channels is very low or you work with very high frequencies you should take care, if the i/c indication is correct or not.
angle:

$$
\varphi=\arccos \lambda \text { with } \varphi=\varphi_{u i}=\varphi_{u}-\varphi_{i}
$$

The sign of the angle is derived from the i / c indication, ' + ' for an inductive load, '-' for a capacitive one. Here the current is the reference. This value is only valid at sinusoidal wave forms! The value can be in the range $\pm 180^{\circ}$, values outside $\pm 90^{\circ}$ usually indicate negative active power.

Impedances

apparent impedance: $\quad Z=\frac{U t r m s}{I t r m s}$
active impedance: \quad Rser $=\frac{P}{I t r m s^{2}}$
reactive impedance $\quad X \operatorname{ser}=\frac{Q}{I t r m s ~^{2}}$

5.3.3 Integrated values

The following basic definitions are used:
$\mathrm{n} \quad$ The value from the measuring cycle number n .
$\mathrm{N} \quad$ Is the number of measuring cycles for the integration. This number depends on the real measuring times and on the desired integration time.

Energy

active energy:

$$
E P=\sum_{n=0}^{N} P_{n} * T_{n}
$$

reactive energy:

$$
E Q=\sum_{n=0}^{N} Q_{n} * T_{n}
$$

apparent energy

$$
E S=\sum_{n=0}^{N} S_{n} * T_{n}
$$

Average values

average active power: $\quad P m=\frac{E P}{\sum_{n=0}^{N} T_{n}}$
average reactive power: $Q m=\frac{E Q}{\sum_{n=0}^{N} T_{n}}$
average apparent power $S m=\frac{E S}{\sum_{n=0}^{N} T_{n}}$

Miscellaneous

charge:

$$
\begin{gathered}
q=\sum_{n=0}^{N} I d c_{n} * T_{n} \\
t=\sum_{n=0}^{N} T_{n}
\end{gathered}
$$

integration time:

5.3.4 Total values

This are values which are calculated over several channels of one group. Following symbols are used:
f first channel of the group

1 last channel of the group
s number of the display channel for the total values

These three symbols depend on the wiring. Please refer to 2.4 , 'The group concept' and 2.5 , ‘Linked values' for details

Following values are calculated for the total values display channels (all other values are invalid):
collective sum voltage: $\quad U_{s_{T R M S}}=\sqrt{\sum_{n=f}^{l} U_{n T R M S}^{2}}$
collective sum current: $\quad I_{s_{\text {TRNS }}}=\sqrt{\sum_{n=f}^{l} I_{n_{\text {TRNS }}}^{2}}$
active power: $\quad P_{s}=\sum_{n=f}^{l} P_{n}$
apparent power: $\quad S_{s}=U_{s} * I_{s}$
reactive power: $\quad Q_{s}=\sqrt{S_{s}^{2}-P_{s}^{2}}$
power factor: $\quad \lambda_{s}=\frac{\left|P_{s}\right|}{S_{s}}$
frequency: $\quad f_{s}=f_{f}$
active energy: $\quad E P_{s}=\sum_{n=0}^{N} P_{s} T_{n}$
reactive energy: $\quad E Q_{s}=\sum_{n=0}^{N} Q_{s} T_{n}$
apparent energy: $\quad E S_{s}=\sum_{n=0}^{N} S_{s} T_{n}$
average active power: $\quad P m_{s}=\frac{E P_{s}}{\sum_{n=0}^{N} T_{n}}$
average reactive power: $Q m_{s}=\frac{E Q_{s}}{\sum_{n=0}^{N} T_{n}}$
average apparent power: $S m_{s}=\frac{E S_{s}}{\sum_{n=0}^{N} T_{n}}$
All this calculation are in accordance with DIN40110.

5.4 Display of values

For the display of the values you can choose several menus. Also in this menus we have the group concept. With the rotary knob you can select the desired group. Now you can have four softkeys (maybe not all appear, depending on the selected wiring, the group and installed options):

Chns By this you can select, which channel you want to see. A second softkey bar appears, where you can select the channel.

Link Here you can select which linked channel you want to see (only if option L50-O6 star to delta conversion is installed).

Sum Here you can select the total values of the group (over several channels).
Displ Here you can setup if you want to see few values in a big font or more values in a smaller font. This softkey may be inactive, if you watch several channels.

Above the displayed values you see a header which describes in several fields, what you see:
Chnx You see the values from the measuring channel x . This is always a measuring channel from the rear side of the instrument.

Linkxy You see the values of a linked channel. xy are the channels which are used to calculate the value.

SUM(x-y) You see the values of a sum channel. x and y are the first and last channels which are used to calculate the value
$(x, y) \quad$ This field is optional. It shows you, which values of your circuit are displayed on this channel.
$\mathrm{n}: \mathrm{x} \quad$ It belongs to group $\mathrm{n} . \mathrm{x}$ is the number of the display channel. You have to use this number (together with the ' \because '!) for example in the script editor or in the computer interface.

The following examples exit if you have the wiring ' $\mathrm{A}: 1+2 \mathrm{~B}: 3+4$ ' and the Aron field is switched on in the measuring menu.

Example: Chn2 (U23,I2) A:2

This is the measuring channel 2 . It should be connected to U23 and I2 of your circuit. It belongs to group A and has the display channel number 2.

Example: Link34 (U12,I3) B:6

This is a linked channel, which is calculated from values of channel 1 and 2. The displayed values represent U12 and I3 of your circuit. It belongs to group B and has the display channel number 6 .

Example: Sum(1-2) A:13

This is the sum channel which is calculated over the display channels 1 to 2 . It belongs to group A and has the display channel number 13.

For further information please refer also 2.4, 'The group concept' and 2.5, 'Linked values'.

5.4.1 Default

With Default you see the most important values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'.

Figure 27: Default display with one and four channels

5.4.2 Voltage

With Voltage you see the most important voltage values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'.

5.4.3 Current

With Current you see the most important current values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'. With the Inrsh key you can reset the last measured inrush current to 0 . This softkey is only available when the manual measuring range is selected for the current and the voltage! The average in the measuring menu has to be set to 1 ! If the inrush current is too big for the measuring range, a dashed line is displayed.

5.4.4 Power

With Power you see the most important power values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'. Further on you get the following resistor values: Z, X and R . Please note that the values of X and R are only correct, if the voltage and current have a sinusoidal waveform!

5.4.5 Energy

In this menu (you reach it by Int. Val) you see the most important energy values as well as derived values which also depend on time. For the handling please see the general description in chapter 5.4, 'Display of values'.

5.4.5.1 Integration menu

In this menu (you reach it by Int. Time) you defines the measuring conditions for time depending signals. Reset sets the display values to their default state (i.e. 0 for all energy values). This is only possible if the state is 'Hold'.

Mode Defines the integration mode. You can only change the mode, if the state is 'RESET'.
off No integration can be done.
continuous After the integration is started it measures continuously until Stop is pressed. With the start of this measurement the values are automatically reset to 0 .
interval After the integration is started it measures continuously until the interval DUR is over. With the start of this measurement the values are automatically reset to 0 .
periodic Same like 'interval', but with two differences:

- \quad At the end of one interval a new one is started.
- The display is only updated at the end of an interval and not after every cycle.
summing After the integration is started it measures continuously until Stop is pressed. With the start of the integration the values are NOT reset to 0 !

Start Time,

Start Date This are the start time and date of an integration. You have to press Start to change the state of the integration changes to 'wait'. If the entered time is reached, the integration starts.

DUR This is the time of the time interval in interval and periodic integration mode.

Runtime is the running integration time. Please note, that this time can be smaller than the real time, for example because of invalid measuring cycles while a change in the measuring ranges.

Start of integration

In general there are three ways to start an integration. You can either enter a start time with Start Time, Start Date, or you can simply press the Start button or you can start via the external sync jack of the LMG. The first cycle which is taken into account is the cycle which follows the actual cycle.

The integration time should be an integer number of times the cycle time.

Stop of integration

The last cycle which is taken into account is the cycle when the Stop button or any other stop signal appear.

State of integration

The integration can be in 6 different states:
Reset The energy measurement is stopped, the values are reset to 0
Wait If the start time is later than the actual time and you have started the integration this state appears until the start time is reached.
Start This state is displayed from the logical start of integration (e.g. pressing the Start button) until the physical start of integration which is always the begin of the next cycle.
Run This is displayed while the physical integration is running
Stop This state is displayed from the logical end of integration (e.g. pressing the Stop button) until the physical end of integration which is always the end of the actual cycle.
Hold This is displayed if the integration has finished. The integrated values are hold, until the integration continuous (only summing mode) or the values are reset by RESET or Start.
The logical integration is running, if the state is displayed inverse.

5.4.6 Graphical display

With Graph you see the graphical display of the normal measuring mode. Also in this menu we have the group concept. With the rotary knob you can select different tabs ('Scope A', 'Scope B', 'Vec.A' and 'Vec.B').

5.4.6.1 Scope A/B

The settings in group A and B are identical, so they are just described once.
Left of this graph you see the Y scaling (ydiv), the Y scaling factor (yzoom) and the four selected signals. Under the graph you see the start position of the graph in seconds, the X scaling factor (xzoom) and the X scaling (x/div). By pressing the rotary knob you can do the following settings:

Graph Here you can select one of the four scope channels ' A ' to ' D '.
Signal Here you can choose the signal to be displayed. The possible values depend on the chosen wiring. In principle you have:
ix: The current of channel x after all activated filters.
$u x$: The voltage of channel x after all activated filters.
px : The power of channel x after all activated filters.
Div. By pressing this softkey, you get a small symbol for the rotary knob in the softkey. This means, that from now the rotary knob is used for changeing the x / y divisions. By pressing this softkey several times you can choose if you want to change the $\mathrm{x} /$ division or $\mathrm{y} / \mathrm{division}$.
You have to confirm your selection with Enter.
move By pressing this softkey, you get a small symbol for the rotary knob in the softkey. This means, that from now the rotary knob is used for the moving. By pressing this softkey several times you can choose if you want to change the following setting:
x-pos The signal is moved if you use the rotary knob. So it is possible to see other parts of the wave form.
c1 The first cursor is moved when using the rotary knob. In the second line below the graph you see the X position in seconds and the value of the wave form at this position. The selected cursor position is constant. That means if you scroll the wave form the cursor can move out of the displayed window. If the cursor is outside the visible screen and you move the cursor, it will be set to the border of the visible screen.
c2 \quad Same as c1
c1\&c2 Both cursors are moved at the same time. In the second line under the graph you see the time difference and the Y value distance between the two cursors.
Split You can have all graphs in the same screen (good for relations between different signals) or you can have one graph for each signal (good if you have many signals)

Grid You can switch the background grid on or off.

Figure 28: Scope display with split off/on

5.4.6.2 Plot function

Figure 29: The plot display; split off
In this menu all measured values can be displayed over the time in one or four plots. On the left side, the information segment, the following settings are displayed:

The plotted signal is shown in the colour in which the graph is drawn.
dy scaling of the y axis per division
y0 offset of the y axis (value of the centre line)
c value of the function at the cursor position

Below the graphs the time depending values are displayed:
dt scaling of the x axis per division
c1 x value of the first cursor
c2 $\quad x$ values of the second cursor
cdt time difference between the cursors

The following settings can be done with the softkeys on the right side:

Chn changes the displayed channel (A-D)

Signl Pressing this softkey a list will open, in which you can adjust the following parameters (refer chapter 4.5):

Signl here you can select the signal to be plot
y/div here you can select the scaling factor of the Y axis
$\mathbf{y 0} \quad$ here you can select the offset of the y axis (value of the centre line). Example: If you select $\mathrm{y} 0=200 \mathrm{~V}$ and $\mathrm{y} / \mathrm{div}=10 \mathrm{~V}$ the you will see a window from 180 V to 220 V on the screen.

Auto Scale If you check this box, the signal will be fitted, if it is outside the display range.

Each setting is confirmed with Enter and rejected with Esc.
\mathbf{y} - \quad pressing this softkey - the rotary knob symbol appears in the upper left corner - the adjustments of the y axis can be changed while the plot is running. Each pressing of the button toggles between the parameters dy and y0. The adjusted values can be changed with the rotary knob. The adjustments will be confirmed by pressing the rotary knob or with the Enter key.

Move here the cursors are selected. With the rotary knob the cursors will scroll through the plot. For easy reading of the values the plot should be frozen. The scrolling of the cursors can be done for each cursor separately or for both together.
c1 the first cursor is moved. below the graphs the values for the x position in seconds and the value of the function are shown.
c2 same as c1
c1\&c2 both cursors are moved at the same time.

Split after pressing this button the display will be split in four separated graphs, refer the following picture:

Figure 30: The plot display; split on
Hint: the settings of the cursor are the same for all four to get accurate readings at the selected moment for all channels.

Fit By this the actual selected graph (A to D) is rescaled to fit into the screen.

5.4.6.3 Vec. A/B

The settings in group A and B are identical, so they are just described once.
On this tabs you see the vectors of voltage and current (Fresnel diagramm). In the lower left corner you see the amplitude and the phase angle of the selected signal. In the upper right corner you see the rotating direction of the vectors and the phase counting of the voltages. ' $1,2,3$ ' means that the zero crossings are in the order $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ phase. ' $3,2,1$ ' means that you have the opposite order. By pressing the rotary knob you can do the following settings:

Signl Here you can choose the signal to be displayed. The possible values are voltage or current.

Ref. Here you can choose the reference for the angles:
$\mathrm{U} \quad \mathrm{U} 1$ is set to 0°

I $\quad \mathrm{I} 1$ is set to 0°
None The sync. signal is used as 0° reference.
All angles which are displayed in this menu are relative to this reference angle.

Zoom You can zoom the selected signal to get longer vectors.

Figure 31: Vector (Fresnel) diagramm

Please note following

1. The angels between the voltages are calculated from the time of the zero crossing in each phase. If you have big distortions on the voltage, this values might be wrong. You can use all possible filter to smooth the voltage.
When using the 'HARM100' measuring mode, this problems will not occur!
2. The angels of the currents are calculated from the power factor. If voltage and current are sinusoidal this value is identical to the $\cos \varphi$ and the calculated angels are correct. If you have distortions in the voltage or current signal, this values might be wrong! You can use all possible filters to smooth the voltage and current. Then you can see the phase shift between the fundamentals.
When using the 'HARM100' measuring mode, this problems will not occur!
3. In Aron circuit the calculation of the power factors is in general wrong (this is a
disadvantage of this circuit!). So also the current angles are wrong (see above). But you can get valid power factors (and angles) if you use the star to delta conversion (option).

For interface access or other usage inside the instrument please refer to following chapters:
9.2.4.1.1.9 Phase angle of current
9.2.4.1.1.13 Amplitude of current
9.2.4.1.14.9 Phase angle of voltage
9.2.4.1.14.13 Amplitude of voltage
9.2.10.8.3 Reference setting for angles

5.4.7 Custom menu

With Custom you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

5.5 Storage of values

First you have to change to the menu you want to print out or to store and press Print/Log (exact handling see 10, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out.

6 CE-Harmonic measuring mode (option L50-O9)

In the CE-Harmonic measuring mode the LMG500 works as an high precision harmonic analyser. The number of settings have been reduced to the needed ones to avoid fail handling.

Note!

The synchronisation is fixed to U . For this reason it is important to have a valid signal for synchronisation to get measuring results. The valid frequency range is from $\mathbf{4 5}$ to $\mathbf{6 5 H z}$!

6.1 Measuring configuration (Measuring)

The synchronisation is fixed to the voltage channel. With the rotary knob you can select three tabs ('Globals', 'Group A' and 'Group B').

6.1.1 Global tab

Here the general settings are done.
Eval Selects how the measuring results have to be evaluated:
Class A The signal is judged according class A of EN61000-3-2:1995 or EN61000-3-2:2006
Class B The signal is judged according class B of EN61000-3-2:1995 or EN61000-3-2:2006
Class C-1 The signal is judged according class C, Table 1 of EN61000-3-2:1995 or EN61000-3-2:2006
Class C-2 The signal is judged according class C, Table 2 of EN61000-3-2:1995 or EN61000-3-2:2006
Class C-3 The signal is judged according class C, Table 3 of EN61000-3-2:1995 or EN61000-3-2:2006
Class C-W The signal is judged according class C, special waveform according 7.3 b) of EN61000-3-2:2006

Class D The signal is judged according class D of EN61000-3-2:1995 or EN61000-3-2:2006
Table 2 The signal is judged according table 2 of EN61000-3-12:2005
Table 3 The signal is judged according table 3 of EN61000-3-12:2005
Table 4 The signal is judged according table 4 of EN61000-3-12:2005
EN... This selects the standard which defines the exact measuring mode of the harmonic analyser:

2:95/-4-7:93 The combination EN61000-3-2:1995 and EN61000-4-7:1993 is active
2:95/-4-7:02 The combination EN61000-3-2:1995 and EN61000-4-7:2008 is active
2:00/-4-7:93 The combination EN61000-3-2:2006 and EN61000-4-7:1993 is active
2:00/-4-7:02 The combination EN61000-3-2:2006 and EN61000-4-7:2008 is active

12:05/-4-7:02 The combination EN61000-3-12:2005 and EN61000-4-7:2008 is active

Systm This selects the system which is used for the measurement. There are four possible values:
$220 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 50 \mathrm{~Hz}, 240 \mathrm{~V} / 50 \mathrm{~Hz}$
$220 \mathrm{~V} / 60 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}, 240 \mathrm{~V} / 60 \mathrm{~Hz}$
$120 \mathrm{~V} / 50 \mathrm{~Hz}$
$120 \mathrm{~V} / 60 \mathrm{~Hz}$
The system is required for example for checking the correct frequency of the measuring setup.

Intv This selects the measuring time for a long time evaluation, for example if you have devices with fluctuation harmonics. The result you can see in the Int-Value menu.

Smooth Here you can switch the 1.5 s low pass filters for smoothing the fluctuating harmonics on or off. With EN61000-3-2:2006 this point is always on!

Figure 32: Measuring menu in CE-Harm mode

6.1.2 Group A/B tab

The settings in group A and B are identical, so they are just described once.

This tab is only accessible if you have chosen EN61000-3-2:2006 with Class C or D or EN61000-3-12!
Here you have to setup the setting which are required for EN61000-3-2:2006. For class C you have to enter the fundamental current and the power factor or your device. For class D you have to enter the active power.

This values are used to calculate the limits. For each value the average measured one is compared to the entered one. If there is a difference of more than 10% all the limits are calculated again with the measured values. In this case it might be, that you have to compare all the measuring results again against the new limits. For this purpose we recommend to use a special test and evaluation software (like for the SYS61K system).

Class C

With PF and Curr you can enter the power factor and the fundamental current.

Class D

With Pow you can enter the active power.

EN61000-3-12

With Rsce you enter the $\mathrm{R}_{\text {sce }}$ value of the system.

6.2 Measuring ranges (Range)

The settings are the same like in 5.2, 'Measuring ranges (Range)'. Please note that the standards require a continuous measuring without gaps. For that reason the auto range function should be deactivated to prevent a range change, because this will cause a short measurement with invalid values.

6.3 Definition of measuring values

The following basic definitions are used:
n
The harmonic order.
T The time of an integer number of the periods of the synchronisation signal

Voltage and current

true root mean square: \quad Utrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^{2} d t} \quad$ Itrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^{2} d t}$

DC component:

$$
U d c=\frac{1}{T} \int_{t=0}^{T} u(t) d t
$$

$$
I d c=\frac{1}{T} \int_{t=0}^{T} i(t) d t
$$

AC component:

$$
U a c=\sqrt{U t r m s^{2}-U d c^{2}}
$$

$$
I a c=\sqrt{I t r m s^{2}-I d c^{2}}
$$

crest factor:

$$
U c f=\frac{U p k}{U t r m s} \quad I c f=\frac{I p k}{I t r m s}
$$

total harmonic distortion: $\quad U t h d=\sqrt{\sum_{n=2}^{40}\left(\frac{U_{n}}{U_{1}}\right)^{2}} \quad I t h d=\sqrt{\sum_{n=2}^{40}\left(\frac{I_{n}}{I_{1}}\right)^{2}}$
The harmonic values ' $\mathrm{I}(\mathrm{n})^{\prime}$ ' and ' $\mathrm{U}(\mathrm{n})^{\prime}$ ' are calculated by using a DFT algorithm. The limit values 'Limit (n)' are calculated according to EN61000-3-2.

Power

active power:

$$
P=\left(\frac{1}{T} \int_{t=0}^{T} u(t) i(t) d t\right)-U(0) * I(0)
$$

with EN61000-4-7:2002/A1:2009
$P=\frac{1}{T} \int_{t=0}^{T} u(t) i(t) d t$
in all other cases
reactive power: $\quad Q=\sqrt{S^{2}-P^{2}}$
apparent power:

$$
S=U t r m s * \text { Itrms }
$$

power factor: $\quad \lambda=\frac{|P|}{S}$

Impedances

apparent impedance: $\quad Z=\frac{U t r m s}{I t r m s}$
active impedance: $\quad R s e r=\frac{P}{I t r m s^{2}}$
reactive impedance: $\quad X$ ser $=\frac{Q}{\text { Itrms }^{2}}$

6.4 Display of values

For the display of the values we have the same rules like in the normal measuring mode (see 5.4, 'Display of values').

6.4.1 Default

With Default you see the most important values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'.

6.4.2 Voltage

With Voltage you see the harmonic values of the measured voltage and in the second row the allowed limits in this voltage (if you see a single channel). A '!' between the two rows shows that the measuring value is bigger than the limit. In this menu you see always the evaluation of the actual measured window!

With the arrow keys or with the shuttle knob you can scroll through the list to see all harmonics.

In the top line you see the total trms value of the signal and the frequency of the synchronisation source.

Below the softkeys you see the result of the complete voltage judgement: a ' \checkmark ' indicates that all requirements of the standard are met. A ' \mathbf{x} ' indicates a fault measuring result. This result is only the result of the actual measuring and not influenced by earlier measurements.

Figure 33: Display of voltages in CE-Harm-Harm mode

6.4.3 Current

With Current you see the harmonic values of the measured current and in the second row the allowed limits in this current. A '!' between the two rows shows that the measuring value is bigger than the limit. A '?' between the two rows shows that the measuring value is bigger than 100%, but smaller than 150% of the limit (which is important for fluctuating harmonics!). This special evaluation is only valid for the harmonics of order $2,3,4,5,6,7,8,9,10,11,13$, 15,17 and 19. The '?' indicates that the harmonic might be outside the standard if the '?' appears for more than 10% of a any 2.5 min windows.

If the current is $<5 \mathrm{~mA}$ or $<0.6 \%$ of $\mathrm{I}_{\text {trms }}$ there is no judgement of the current. For this reason
\qquad ' is displayed for the limit.

With the arrow keys or with the shuttle knob you can scroll through the list to see all harmonics.

In the top line you see the total trms value of the signal and the frequency of the synchronisation source.

Below the softkeys you see the result of the complete current judgement: a ' \checkmark ' indicates that all requirements of the standard are met. A ' \mathbf{x} ' indicates a fault measuring result. This result is only the result of the actual measuring and not influenced by earlier measurements.

Please note:
If only '?' appear and no '!' then the result will be ' \checkmark ', because this is only the short term result, which might be correct.

6.4.4 Power

With Power you see the most important power values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'

6.4.5 Long time evaluation

In this menu you see the result of the long time evaluation. This is started with Start and can be cancelled with the Stop button. You see in the first row the order of the harmonics, followed by the maximum measured current.

The third row shows the evaluation for fluctuating harmonics. According to the standard it is allowed that some defined harmonics have values up to 1.5 times the limit for maximum 10% of a 2.5 minute window. The maximum percentage out of this window is displayed here. If the value is bigger than 10% you have a '!' behind this value.

In the fourth row you see if the current harmonics have violated any point of the standard anytime while the complete long time measuring. If you have here a '!' the device under test does not fulfil the standard!

In the last row you see if the test voltage has ever violated the harmonic limits.

Figure 34: Long time evaluation of harmonics
Below the softkeys you see the total evaluation of the measurement. If any current harmonic has violated the standard at any time or the differences between control and measured values of power (class D) or of current and power factor (class C) were more then 10% (only for A14) you have 'Test I \mathbf{x} '. If any voltage harmonic or the amplitude or the frequency have violated the standard you have 'Test $\mathrm{U} \mathbf{x}$ '. The printing and logging of this menu is only possible in single mode (see 4.4.2.1, 'Interfaces for remote control') and with ASCII format.

6.4.6 Graphical display

With Graph you see the graphical display of the CE-Harm measuring mode. Also in this menu we have the group concept. With the rotary knob you can select different tabs ('Spectrum A' and 'Spectrum B').

6.4.6.1 Spectrum A/B

The settings in group A and B are identical, so they are just described once.
The graphical display of the voltage, the current and the limits of the harmonics. On the left side you see for each graph signal value (yn), the limit value (yl) at cursor position, the scaling of the y-axis (dy) and the zoom of the y-axis (zm).

If you have logarithmic display, the dy value specifies the signal level at the top line. The lower lines have each a tenth of the upper ones.

Graph Here you can select one of the four possible display channels.

Signl Defines the signal for this display channel. Possible values are (for each channel):
U The voltage harmonics
LU The limits of the voltage harmonics and the voltage harmonics
I The current harmonics
LI The limits of the current harmonics and the current harmonics

For the displays with limits and harmonics you have always one thin bar with the limit, one thin bar with the measuring value and again one thin bar with the limit. So the value is covered by the limits.
You can imagine that the limits are displayed like a cup filled with water (which represents the values). If you have too much in the cup you have a problem.

Zoom Allows you to zoom the signals in y direction
Move Allows you to move the cursor to another position.

Split You can have one graph in one big screen or you can have several graphs in several screens (see pictures below)

Log changes between linear scaling (=off) and logarithmic scaling (=on) for the y-axis.

Figure 35: Graphical display of harmonics

6.4.6.2 Plot function

For the plot function we have the same rules like in the normal measuring mode (see '5.4.6.2, Plot function')

6.4.7 Custom menu

With Custom you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

6.5 Storage of values

First you have to change to the menu you want to print out or to store and press Print/Log (exact handling see 10, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out. In the menues with harmonic values you get all harmonics (not only the ones you see!).

6.6 Compliance tests according EN61000-3-2

For tests according to this standard you first have to change the Range to 'Manual' mode. This is necessary because the test has to be done without any gaps.

Now you go to the Measuring menu, change the version with EN to '61000-3-2:1995' or '61000-3-2:2006' and select with Eval the class you want to test.

Now you can switch on the voltage. When the LMG is synchronised you can switch on the equipment under test (EUT).

If you want to make long time evaluations you can start them with Start.

7 CE-Flicker measuring mode (option L50-O4)

In the CE-Flicker measuring mode the LMG500 works as an high precision flicker analyser according to EN61000-4-15. The number of settings has been reduced to the needed ones to avoid fail handling.

Note!

In this measuring mode the valid frequency range is from $\mathbf{4 5}$ to $\mathbf{6 5 H z}$!

7.1 Measuring configuration (Measuring)

The synchronisation is fixed to the voltage channel. With the rotary knob you can only select 'Globals' tab.

7.1.1 Globals tab

Here the general settings are done.
dMax This selects the dmax limit for the measuring. This value has to be taken out of the standard, depending on the measuring requirements.

EN Defines the standard which should be used:
3:95/-4-15 EN61000-3-3:1995 with EN61000-4-15:1998/A1:2003
3:08/-4-15 EN61000-3-3:2008 with EN61000-4-15:1998/A1:2003
3:08B2/-4-15 EN61000-3-3:2008 with EN61000-4-15:1998/A1:2003
This one is especially for tests according annex B. 2
-11:2000 EN61000-3-11:2000 with EN61000-4-15:1998/A1:2003
Syst This selects the system which is used for the measurement. There are four possible values:
$230 \mathrm{~V} / 50 \mathrm{~Hz}$
$230 \mathrm{~V} / 60 \mathrm{~Hz}$
$120 \mathrm{~V} / 50 \mathrm{~Hz}$
$120 \mathrm{~V} / 60 \mathrm{~Hz}$
The system is required for example for checking the correct frequency of the measuring setup.

Intv This is the interval time of the short term flicker measuring. The standard value is 10min.

Per. This is the number of short term periods for the long term measurement. The standard value is 12 periods for a long term time of 2 hours.

Figure 36: Measuring menu in CE-Flicker mode

7.1.2 Ztest/Zref tab

This is only available when EN61000-3-11 is selected.
With Ztest you have to enter your actual used test impedance in Ω.
With Zref you have to choose, if your reference impedance is $(0.24+\mathrm{j} 0.15) \Omega$ or $(0.4+\mathrm{j} 0.25) \Omega$.
The values for $\mathrm{d}_{\mathrm{c}}, \mathrm{d}_{\text {max }}, \mathrm{P}_{\mathrm{st}}$ and P_{lt} are recalculated as described in EN61000-3-11:2000

7.2 Measuring ranges (Range)

The settings are the same like in 5.2, 'Measuring ranges (Range)'. Please note that the standards require a continuous measuring without gaps. For that reason the auto range function should be deactivated to prevent a range change, because this will cause a short measurement with invalid values.

7.3 Definition of measuring values

The following basic definitions are used:
n The harmonic order.
T The time of an integer number of the periods of the synchronisation signal. The integer factor depends on the standard EN61000-4-7. Actually 16 periods are measured.

Voltage and current

true root mean square: $\quad U t r m s=\sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^{2} d t}$
Itrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^{2} d t}$
total harmonic distortion: $\quad U t h d=\sqrt{\sum_{n=2}^{40}\left(\frac{U_{n}}{U_{1}}\right)^{2}}$

$$
\text { Ithd }=\sqrt{\sum_{n=2}^{40}\left(\frac{I_{n}}{I_{1}}\right)^{2}}
$$

The harmonic values ' $\mathrm{I}(\mathrm{n})$ ' and ' $\mathrm{U}(\mathrm{n})$ ' are calculated by using a DFT algorithm.
The values 'Pmom', 'Pst' and 'Plt' are calculated using a flickermeter according to EN61000-4-15. 'dc' and 'dmax' are calculated according to EN61000-3-3.

Power

active power:	$P=\frac{1}{T} \int_{t=0}^{T} u(t) i(t) d t$
reactive power:	$Q=\sqrt{S^{2}-P^{2}}$
apparent power:	$S=U t r m s *$ Itrms
power factor:	$\lambda=\frac{\|P\|}{S}$

Impedances

apparent impedance: $\quad Z=\frac{U t r m s}{\text { Itrms }}$
active impedance:

$$
\text { Rser }=\frac{P}{\text { Itrms }^{2}}
$$

reactive impedance: $\quad X \operatorname{ser}=\frac{Q}{\text { Itrms }^{2}}$

7.4 Display of values

For the display of the values you can choose several menues.

7.4.1 Default

For the display of the values we have the same rules like in the normal measuring mode (see 5.4, 'Display of values')

7.4.2 Voltage

Here you see the TRMS value, the THD and the frequency.

7.4.3 Current

Here you see the TRMS value, the THD and the frequency.

7.4.4 Power

For the display of the values we have the same rules like in the normal measuring mode (see 5.4, 'Display of values')

7.4.5 Flicker (Int. Val)

In this menu you see the flicker values of the equipment under test (EUT). You see the short term flicker level P_{st}, the long term flicker level P_{lt}, the actual flicker level $\mathrm{P}_{\mathrm{mom}}$, the relative steady-state voltage change d_{c}, the maximum relative voltage change $d_{\text {max }}$, the remaining long term time, the remaining short term time and the state of the flicker measuring.

The state can be 'starting' (8s from pressing START), 'running' (while the long term interval) and 'stooped' after the measuring.

Figure 37: Evaluation of flicker measurement
$d_{\text {max }}$ is measured over the long term time.
d_{c} is the relative voltage change between two 'constant' voltages. Therefore it can have different values:
$\mathrm{d}_{\mathrm{c}}=------$ means that there was no constant voltage.
$\mathrm{d}_{\mathrm{c}}=0.000 \%$ means that there was exactly one constant voltage.
Any other value is the biggest difference between two constant voltages.
P_{lt} is calculated at the end of the long term measuring. Until then it is displayed as '--------'.

7.4.6 Graphical display

Here just the plot function is available. The handling is the same like described in 5.4.6, 'Graphical display'

But there are some things to know concerning the displayed values:
In the other modes, all values are measured in the same time interval. In the flicker mode there are two main time intervals: 10 ms and 320 ms . Most values are updated every 320 ms , but some come every 10 ms : They are the momentary flicker level (ID is Pml) and the half wave trms value (ID is Uhwl). As said above, this values come every 10ms. The Pmoml and Utrms values are the average values of Pml and Uhwl. So you can see Pmoml and Pml in one graph as function 'A' and 'B'. Because Pmoml has a slower time base, it is plotted with 32 same values.

7.4.7 Custom menu

With Custom you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

7.5 Storage of values

First you have to change to the menu you want to print out or to store and press Print/Log (exact handling see 10, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out.

7.6 Tests according EN61000-3-3

For tests according to this standard you first have to change the Range to 'Manual' mode. This is necessary because the test has to be done without any gaps.

Switch on the voltage of the EUT. Start the flicker process with Start. After a delay of 8s the real measuring is started. Now you can switch on the EUT to get the different values. If you want to stop the measuring before the end of the long term time just press Stop.

Annex B. 2

Usually the values d_{c} and $d_{\text {max }}$ run for the whole observation period (Plt-time). To simplify tests according annex B. 2 of EN61000-3-3:2008, you can choose, that these values are reset after each short term observation periode. To do this, please select the B2 item in measuring menu, softkey $\mathbf{E N}$.

8100 Harmonics measuring mode (option L50-O8)

In the 100 Harmonics measuring mode the LMG500 works as a high precision harmonic analyser. The difference to the CE mode is, that 100 harmonics, the phase angles and the power harmonics are measured. The frequency range is much wider. There is no check against any limits.

8.1 Measuring configuration (Measuring)

When you came to this menu by pressing Measure you first have to choose MODE and then HARM to enter this mode. The well known setting menu with the three tabs („Globals",
„Group A" and „Group B") opens:
Globals Here you can set up the wiring in which is measured.
Group A/B For the settings in this menu refer 5.1.2 Group A/B/C/D tab. Additional settings are possible:

FDiv This defines a frequency divider for the basic wave. With a value of 1 the measured frequency is identical to the basic wave. With a value of 2 the fundamental has only the half frequency of the measured frequency (e.g. A 50 Hz signal with $\mathbf{F D i v}=4$ is analysed on a 12.5 Hz base. So you get 3 interharmonic between the 50 Hz Harmonics) Only with FDIV set to 1 you get the THD values of the signals

Filt Defines the active filter:
Auto: A sufficient anti aliasing filter will be selected. other values: The chosen filter will be activated. CAUTION: with a wrong filter setting you might get aliasing!

Pressing the rotary knob you will get to the main menu.

Figure 38: Measuring menu in Harm100 mode

8.2 Measuring ranges (Range)

The settings are the same like in 5.2, 'Measuring ranges (Range) 5.2 ', but in this mode you have no autorange function.

8.3 Definition of measuring values

The following basic definitions are used:
n The harmonic order.
T The time of an integer number of the periods of the synchronisation signal. The integer factor depends on the frequency of the basic wave:

Basic wave range / Hz	Number of measured periods	Sample frequency divider	Automatically selected filter
$640-1280$	32	1	HF-Rejection
$320-640$	16	1	HF-Rejection
$160-320$	8	1	HF-Rejection
$80-160$	4	1	HF-Rejection
$40-80$	4	2	18 kHz
$20-40$	4	4	6 kHz
$10-20$	4	8	2.8 kHz
$5-10$	4	16	1.4 kHz
$2.5-5$	4	32	700 Hz
$1.25-2.5$	4	64	350 Hz
$0.625-1.25$	4	128	175 Hz
$0.3125-0.625$	4	256	87.5 Hz
$0.15625-0.3125$	2	256	87.5 Hz
$0.078125-0.15625$	1	256	87.5 Hz

The 'sample frequency divider' defines, how the sampling frequency of about 100 kHz is divided for this measuring.

Voltage and current

true root mean square: \quad Utrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^{2} d t} \quad$ Itrms $=\sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^{2} d t}$
total harmonic distortion: $\quad U t h d=\sqrt{\sum_{n=2}^{99}\left(\frac{U_{n}}{U_{1}}\right)^{2}} \quad I t h d=\sqrt{\sum_{n=2}^{99}\left(\frac{I_{n}}{I_{1}}\right)^{2}}$
Only with FDIV set to 1 you get the THD values of the signals.
The harmonic components are calculated to meet the following:

$$
u(t)=\sum_{n=0}^{99} \sqrt{2} U_{n} \sin \left(n \omega t+\varphi_{\text {un }}\right) \quad i(t)=\sum_{n=0}^{99} \sqrt{2} I_{n} \sin \left(n \omega t+\varphi_{i n}\right)
$$

The harmonic values ' $\mathrm{I}(\mathrm{n})$ ', 'U(n)' and 'Phase(n)' are calculated by using a DFT algorithm. With this values also the values of ' $\mathrm{P}(\mathrm{n})^{\prime}, ~ ' \mathrm{~S}(\mathrm{n})$ ' and ' $\mathrm{Q}(\mathrm{n})$ ' are calculated. This ' $\mathrm{Q}(\mathrm{n})$ ' is only the reactive power, caused by a phase shift of a voltage and current component with the same frequency. Therefore it is in this mode possible to calculate also the reactive power which is caused by voltage and current components with different frequencies. This value is called D:
$D=\sqrt{S^{2}-P^{2}-Q \text { shift }}{ }^{2}$ with Q shift $=\sum_{n=0}^{99} Q(n), \mathrm{P}$ and S see below.

Power

$$
\begin{array}{ll}
\text { active power: } & P=\frac{1}{T} \int_{t=0}^{T} u(t) i(t) d t \\
\text { reactive power: } & Q=\sqrt{S^{2}-P^{2}} \\
\text { apparent power: } & S=U t r m s^{*} \text { Itrms } \\
\text { power factor: } & \lambda=\frac{|P|}{S}
\end{array}
$$

Impedances

apparent impedance: $Z=\frac{\text { Utrms }}{\text { Itrms }}$
active impedance: \quad Rser $=\frac{P}{I^{\text {trms }}{ }^{2}}$
reactive impedance: $\quad X \operatorname{ser}=\frac{Q}{\text { Itrms }^{2}}$

8.4 Display of values

For the display of the values you can choose several menues.
Harmonic values (amplitude, phase, frequency, ...) can just be displayed constant in steady state condition due to the nature of FFT. While signal changes (frequency and/or amplitude) you will get unexpected signals (they are not wrong, but due to the special calculation method 'FFT' they might look different than you expect).

The influence of the HF-Rejection filter is compensated for the amplitudes of the harmonics. The values for U, I and P are not recalculated from the harmonics, but are calculated from the sampling values to get for example interharmonics and components with higher frequencies which are not captured by the harmonics. So it is not possible to compensate the influence of the filters for this values! For the same reason this values can also be much bigger than the values which can be derived from the harmonics (depending on the signal).

8.4.1 Default

With Default you see the most important values of the instrument. The available settings are described in „5.4 Display of values".

8.4.2 Voltage

With Voltage you see the harmonic values of the measured voltage and in the second row the phase of the harmonic component.

With the softkey Chns you can choose the channel.
With the softkey Href you can select the reference signal (voltage, current or none). The fundamental of this signal is always set to 0°. When selected 'none', the time window is the reference.

With the softkey Link the harmonics of the linked values will be shown.
Using the rotary knob you can scroll through the list to see all harmonics.

8.4.3 Current

With Current you see the harmonic values of the measured current and in the second row the phase of the harmonic component.

With the softkey Chns you can choose the channel.
With the softkey Href you can select the reference signal (voltage, current or none). The fundamental of this signal is always set to 0°. When selected 'none', the time window is the reference.

With the softkey Link the harmonics of the linked values will be shown.
Using the rotary knob you can scroll through the list to see all harmonics.

8.4.4 Power

With Power you see the harmonic values of the measured powers. The synchronisation frequency is shown in the first row, displaying all channels.

With the softkey Chns you can choose the channel.
With List you can choose several lists with the different combinations of the different powers.
Using the rotary knob you can scroll through the list to see all harmonics.

Please note

The harmonics of the power are not the results of a fourier transformation of the power waveform, but are calculated by same frequent voltage and current harmonics.

8.4.5 Graphical display

Here just the plot function, the spectrum and the vector diagram is available. The handling is the same like described in 5.4.6, 'Graphical display' and 6.4.6.1, 'Spectrum A/B'.

8.4.6 Custom menu

With Custom you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

8.5 Storage of values

First you have to change to the menu you want to print out or to store and press Print/Log (exact handling see 10 , 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out. In the menues with harmonic values you get all harmonics (not only the ones you see!).

9 Interfaces (IEEE option L50-O1)

With exception of the IEEE interface all interfaces could also be used for data logging (see 10 , 'Logging of values to drives, printer and interfaces'). To remote control the LMG please reserve first the wished interface for this job (see 4.4.2.1, 'Interfaces for remote control').

This chapter includes all commands and a short general syntax description. A much more detailed syntax description with a lot of examples and further programming explanations can be found in our Programmer's Guide on the CD which is included in the printed version of this manual. If this is missing or you have just a PDF version of this manual you can request the Programmer's Guide by email from 'sales@zes.com'.

9.1 Short syntax description

There are two implemented languages: SCPI and SHORT. When switching on the instrument SCPI is selected. To change to SHORT you have to send:

SYST:LANG SHORT

For further differences between SCPI and SHORT command set see also 9.2.4, ‘‘FETCh and :READ commands’

The general syntax for both command sets is identical. The most important syntax rules are:

- A message to the instrument has to be terminated with an EOS character.
- brackets [..] are showing optional part of commands. There is no need to send them to the device, but you can do it, if you need this function. The brackets are just informative and should not be sent.
- The number of the measuring channel (further on called 'suffix') follows directly (without any space) after the identifier. If you don't specify one, ' 1 ' is assumed.
- If you request a value you have to add a '?' directly behind the suffix (or the identifier, if no suffix is specified), without any space.
- All parameters following the commands have to be separated from the command with at least one space character.
- The group number is usually an optional parameter in the format [,<NRi>]. If you don't specify it, group A $(=0)$ is assumed as default value.
- '/qonly/' indicates, that this is a value which can only be demanded, but not set. Do not send the '/qonly/' string to the device, it is just written in this manual to explain the command. For example you can't send a measuring value.
- '/nquery/' indicates that this value can only be set, and not demanded. Do not send the '/nquery/' string to the device, it is just written in this manual to explain the command. For example you can't request a trigger command.
- All commands without '/qonly/' and '/nquery/' can be read and set.
- <NRf> are float numbers
- <NRi> are integer numbers
- <list> stands for $\langle(\langle\mathrm{NRf}\rangle:\langle\mathrm{NRf}\rangle)\rangle$. With this construct you can request several values which are stored in an array, for example harmonic values. To get the $3^{\text {rd }}$ to $11^{\text {th }}$ harmonic of the voltage of the second measuring channel you have to write in SHORT command set: HUAM2? (3:11)

For the complete syntax rules please take a look at the Programmer's Guide!

Examples showing the syntax

Equivalent SCPI commands for reading the TRMS value of the $1^{\text {st }}$ measuring channel:
:FETCh:CURRent:TRMS?
:FETC:CURR:TRMS?
:FETC:CURR:TRMS1?
As SHORT command it would be
ITRMS? or ITRMS1?
Please note that there is no space before the ' 1 ' and no space before the ' $?$ '!
Command for reading the harmonic voltages from the $2^{\text {nd }}$ to the $4^{\text {th }}$ harmonic (3 values): :FETC:HARM:VOLT:AMPL? (2:4)
Please notice that there is at least one space between the question mark and the parameters!

Command for setting the 250 V range:
:SENS:VOLT:RANG 250
Please notice that there is at least one space before the parameter 250 !
Command for setting the 250 V range in the $3^{\text {rd }}$ channel:
:SENS:VOLT:RANG3 250
Please notice that there is no space before the suffix and at least one space before the 250!

Commands for setting and reading a filter in group B (short language):
FILT 5,1
FILT? 1
For group A you can write:
FILT 5,0 or FILT 5
FILT? 0 or FILT?

For more examples please take a look at the Programmer's Guide!

9.2 Commands

Here you find all commands the instrument can handle. The commands are ordered like in the SCPI tree structure. The description is always the same:

SCPI: The SCPI syntax of the command
SHORT: The SHORT syntax of the command
ID: The ID for script editor and similar Mode: The valid measuring modes
Type: The data type Suffix: The valid suffix range
Value: The value range
Unit: The physical unit Group: The valid group range
An ' n / a ' means 'not applicable'. If you for example see an ' n / a ' in the 'Value:' field, then this command has no value at all. Or it is a float number with all valid codes according IEEE754.

The titles of the useable commands are in a box. There you find from left to right: SCPI command, SHORT command and the ID if existing.

Please see also 9.1, 'Short syntax description'.
For all this commands there is a separated index. See chapter 16, 'Interface command index'.

9.2.1 IEEE488.2 common commands

This are commands which are defined in IEEE488.2, but they are pure ASCII commands and can also be sent via other interfaces like RS232.
9.2.1.1 *CLS *CLS

SCPI: *CLS/nquery/
SHORT: *CLS/nquery/

ID:	n / a	Mode:	all
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Clears the event registers of all status data structures in a device and the error/event queue.

9.2.1.2 *ESE *ESE

SCPI: *ESE <NRi>
SHORT: *ESE <NRi>

ID: n/a
Type: long int
Value: 0... 255
Unit: n/a

Mode:	n / a
Suffix:	n / a
List:	n / a
Group:	n / a

Used to set up or read out the Event Status Enable Register.

9.2.1.3 *ESR? *ESR?

SCPI: *ESR?/qonly/

SHORT: *ESR? /qonly/

ID:	n / a	Mode:	all
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .255$	List:	n / a
Unit:	n / a	Group:	n / a

Reads out and clears the Event Status Register.

9.2.1.4 *IDN? *IDN?

SCPI: *IDN? /qonly/
SHORT: *IDN? /qonly/

ID:	n/a	Mode:	all
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Reads out the identification of the device. There are 4 fields separated by commas:
Field 1 Manufacturer
Field 2 Model
Field 3 Serial number
Field 4 Firmware level

9.2.1.5 *IST? *IST?

SCPI: *IST? /qonly/
SHORT: *IST? /qonly/

ID:	n / a	Mode:	all
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

Individual Status Query. This returns the status of the 'ist' local message in the device.
9.2.1.6 *OPC *OPC

SCPI: *OPC/nquery/
SHORT: *OPC/nquery/

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: n/a Value: n/a Unit: n/a

Mode: all
Suffix: n/a
List: n/a
Group: n/a

Causes the device to set the operation complete bit in the Standard Event Status Register, when all pending selected device operations have been finished.

9.2.1.7 *OPC? *OPC?

SCPI: *OPC? /qonly/
SHORT: *OPC?/qonly/

ID:	n/a	Mode:	all
Type:	char	Suffix:	n / a
Value:	'1'	List:	n/a
Unit:	n/a	Group:	n / a

Causes the device to place a „" (=31h) in the output queue, when all pending selected device actions have been finished (=operation complete). This is independent from the output format!

9.2.1.8 *PRE *PRE

SCPI: *PRE <NRi>
SHORT: *PRE <NRi>

ID:	n/a	Mode:	all
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n/a	Group:	n / a

Used to set up or read out the Parallel Poll Enable Register

9.2.1.9 *RST
 *RST

SCPI: *RST/nquery/
SHORT: *RST/nquery/

ID:	n/a	Mode:	all
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

This performs a device reset. A lot of internal settings (like measuring mode, ranges, ...) are set to their default values. In this chapters the default value is indicated by '[*RST Default value]'. All time dependent measurements are stopped (energy, flicker, harmonics).

The interface and it's parameters are not reset! If you want to reset it, please use a BREAK with RS232 interface or a 'device clear' with IEEE interface.

Hint

The execution of this command can take up to several seconds. The LMG works internally with a watchdog protection. To prevent that the watchdog becomes active, the '*RST'
command should be send as the only command in a message. Just the '*OPC?' can be added to get a feedback, if the command has finished ('*RST;*OPC?'). In this case wait until the ' 1 ' returns before sending the next commands!

9.2.1.10 *SRE *SRE

SCPI: *SRE <NRi>
SHORT: *SRE <NRi>

ID:	n / a	Mode:	all
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 255$	List:	n / a
Unit:	n/a	Group:	n / a

Sets or queries the Service Request Enable Register

9.2.1.11 *STB? *STB?

SCPI: *STB?/qonly/
SHORT: *STB? /qonly/

ID:	n / a	Mode:	all
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 255$	List:	n / a
Unit:	n / a	Group:	n / a

Queries the Status Byte Register.
9.2.1.12 *TRG *TRG

SCPI: *TRG/nquery/
SHORT: *TRG/nquery/
ID: $\quad \mathrm{n} / \mathrm{a}$
Mode: all
Type: n/a
Value: n/a
Unit: n/a
Suffix: n/a
List: n/a
Group: n/a
Triggers the same action that happens when programmer sends DT1 via IEEE488.1 interface or '\&TRG<cr><lf>' via RS232 interface. Actually nothing is performed.

9.2.1.13 *TST?

*TST?
SCPI: *TST?/qonly/ <NRi>
SHORT: *TST?/qonly/ <NRi>
ID: $\quad \mathrm{n} / \mathrm{a}$
Mode: all
Type: long int
Value: n/a
Suffix: n/a
Unit: n/a
List: n/a
Group: n/a

Initiates a self test. Returns a value depending on <NRi>. This command should only be used by ZES and not by customers.

9.2.1.14 *WAI *WAI

SCPI: *WAI/nquery/
SHORT: *WAI/nquery/

ID:	n/a	Mode:	all
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Waits until all pending selected device operations have been finished. Note: The instrument handles commands in a queue, so when executing the *WAI all previous commands have been executed. Thus the instrument is doing nothing when receiving the *WAI command. It has been implemented to follow the standard IEEE488.2.

9.2.2 :CALCulate commands

Here you find commands which influence the script editor (formulas) or limits.

```
:CALCulate -> :ENVironment
:DISPlay :FORMula
:FETCh :LIMit
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.2.1.1 ENVironment
 ENV
 Env

SCPI: :CALCulate:ENVironment <NRf>[,<NRi>]
SHORT: ENV <NRf>[,<NRi>]

ID:	Env	Mode:	all
Type:	float	Suffix:	n/a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	optional $[,<$ NRi $>]: 0=$ Env0, $\ldots, 7=$ Env 7

Sets or queries an environment variable.

9.2.2.2 :FORMula

```
:CALCulate }->\mathrm{ :ENVironment
:DISPlay :FORMula }->\mathrm{ [:DEFine]
:FETCh :LIMit
```

```
:FORMat
:INITiate
INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
STATus
:SYSTem
:TRIGger
```


9.2.2.2.1 [:DEFine] FORM

SCPI: :CALCulate:FORMula[:DEFine] <string program data>
SHORT: FORM<string program data>

ID:	n / a	Mode:	all
Type:	string	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Sets or reads the script of the script editor. There is no *RST default value.
For example 'FORM ,,a=1;"‘lf>' sets the internal variable a to 1 .

9.2.2.3 :LIMit:

```
:CALCulate -> :ENVironment
:DISPlay :FORMula
:FETCh :LIMit }->\mathrm{ :CLASs
:FORMat :DMAX
:INITiate :FCURrent
:INPut :PFACtor
:INSTrument :POWer
:MEMory :SYSTem
:READ :VERSion
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.2.3.1 :CLASs EVAL

SCPI: :CALCulate:LIMit:CLASs <NRi>
SHORT: EVAL <NRi>

ID:	n / a	Mode:	CE
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 6,10 \ldots 12$	List:	n / a
Unit:	n / a	Group:	n / a

Sets the evaluation of the harmonics in the CE-Harm mode:
0: Class A (EN61000-3-2) [*RST default value]
1: Class B (EN61000-3-2)
2: Class C-2 (EN61000-3-2)

3: Class D (EN61000-3-2)
4: Class C-3 (EN61000-3-2)
5: Class C-W (EN61000-3-2)
6: Class C-1 (EN61000-3-2)
10: Table 2 (EN61000-3-12)
11: Table 3 (EN61000-3-12)
12: Table 4 (EN61000-3-12)

9.2.2.3.2 :DMAX FLDL

SCPI: :CALCulate:LIMit:DMAX <NRf>
SHORT: FLDL <NRf>

ID:	n/a	Mode:	Flicker
Type:	float	Suffix:	n/a
Value:	in \%	List:	n/a
Unit:	n/a	Group:	n/a

Sets the allowed limit for $\mathrm{d}_{\max }$ for the device under test according to the standard in the flicker mode.

9.2.2.3.3 :FCURrent ISO

SCPI: :CALCulate:LIMit:FCURrent <NRf>
SHORT: ISO <NRf>

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, $\left[{ }^{*} R S T\right.$ default value $]=1.0$	List:	n/a
Unit:	A	Group:	n/a

Sets or reads the fundamental current for the EN61000-3-2:2006 limit calculation in the CE mode.

9.2.2.3.4 :FVERsion FNRM

SCPI: :CALCulate:LIMit:FVERsion <NRi>
SHORT: FNRM <NRi>

ID:	n / a	Mode:	Flicker
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .3$	List:	n / a
Unit:	n / a	Group:	n / a

Sets or reads the edition of the flicker standard:
0: EN61000-3-3:1995 [*RST default value]
1: EN61000-3-3:2008
2: EN61000-3-3:2008 Annex B. 2
3: EN61000-3-11:2000

9.2.2.3.5 :PFACtor
 PFSO

SCPI: :CALCulate:LIMit:PFACtor <NRf> SHORT: PFSO <NRf>

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, $\left[{ }^{*}\right.$ RST default value $]=1.0$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or reads the power factor for the EN61000-3-2:2006 limit calculation in the CE mode.

9.2.2.3.6 :POWer PSO

SCPI: :CALCulate:LIMit:POWer <NRf>
SHORT: PSO <NRf>

ID:	n / a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	$\mathrm{n} / \mathrm{a},\left[{ }^{*} \mathrm{RST}\right.$ default value $]=1.0$	List:	n / a
Unit:	W	Group:	n / a

Sets or reads the power for the EN61000-3-2:2006 limit calculation in the CE mode.

9.2.2.3.7 :RSCE RSCE

SCPI: :CALCulate:LIMit:RSCE <NRf>
SHORT: RSCE <NRf>

ID:	n/a	Mode:	CE
Type:	float	Suffix:	n/a
Value:	$33 \ldots . .10000,\left[{ }^{*}\right.$ RST default value] $=33$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or reads the $\underline{\mathrm{R}}_{\text {sce }}$ for the EN61000-3-12:2005 limit calculation in the CE-Harm mode.

9.2.2.3.8 :SYSTem SYSD

SCPI: :CALCulate:LIMit:SYSTem <NRi>
SHORT: SYSD <NRi>

ID:	n/a	Mode:	CE-Harm
Type:	long int	Suffix:	n/a
Value:	$0 \ldots . .3$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or reads the supply system for the CE-harmonics and flicker:
$0: 230 \mathrm{~V} / 50 \mathrm{~Hz}$ [*RST default value]
1: $230 \mathrm{~V} / 60 \mathrm{~Hz}$
2: $120 \mathrm{~V} / 50 \mathrm{~Hz}$
3: $120 \mathrm{~V} / 60 \mathrm{~Hz}$
4: $220 \mathrm{~V} / 50 \mathrm{~Hz}$

5: $220 \mathrm{~V} / 60 \mathrm{~Hz}$

6: $240 \mathrm{~V} / 50 \mathrm{~Hz}$
7: $240 \mathrm{~V} / 60 \mathrm{~Hz}$

9.2.2.3.9 :VERSion
 EDIT

SCPI: :CALCulate:LIMit:VERSion <NRi>
SHORT: EDIT <NRi>

ID:	n/a	Mode:	CE
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .4$	List:	n / a
Unit:	n/a	Group:	n / a

Sets or reads the edition of the harmonic standard:
0: EN61000-3-2:1995 and EN61000-4-7:1993 [*RST default value]
1: EN61000-3-2:1995 and EN61000-4-7:2008
2: EN61000-3-2:2006 and EN61000-4-7:1993
3: EN61000-3-2:2006 and EN61000-4-7:2008
4: EN61000-3-12:2005 and EN61000-4-7:2008

9.2.2.3.10 :ZREF ZREF

SCPI: :CALCulate:LIMit:ZREF <NRf>
SHORT: ZREF <NRf>

ID:	n/a	Mode:	Flicker
Type:	int	Suffix:	n/a
Value:	0,1	List:	n / a
Unit:	n/a	Group:	n/a

Sets or reads the $\underline{Z}_{\text {ref }}$ for the EN61000-3-11:2000 limit calculation.
0 : ($0.24+\mathrm{j} 0.15) \Omega$ [*RST default value]
$1:(0.40+\mathrm{j} 0.25) \Omega$

9.2.2.3.11 :ZTESt ZTST

SCPI: :CALCulate:LIMit:ZTESt <NRf>
SHORT: ZTST <NRf>

ID:	n / a	Mode:	Flicker
Type:	float	Suffix:	n/a
Value:	$0.001 \ldots 2,\left[{ }^{*}\right.$ RST default value $]=0.283$	List:	n/a
Unit:	Ω	Group:	n/a

Sets or reads the $\underline{Z}_{\text {test }}$ for the EN61000-3-11:2000 limit calculation.

9.2.3 :DISPlay commands

```
:CALCulate
:DISPlay }->\mathrm{ :CONTrast
:FETCh :RESet
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.3.1 :CONTrast DISC

SCPI: :DISPlay:CONTrast <NRf>
SHORT: DISC <NRf>

ID:	n/a	Mode:	all
Type:	float	Suffix:	n / a
Value:	$0 \ldots .100$ in $\%,\left[{ }^{*}\right.$ RST default value] $=65$	List:	n / a
Unit:	n / a	Group:	n / a

Sets or reads the contrast of the display.

9.2.3.2 :RESet DISR

SCPI: :DISPlay:RESet
SHORT: DISR

ID:	n/a	Mode:	all
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Resets the display to the default values. (e.g. small fonts...).

9.2.4 :FETCh and :READ commands

These both commands are used to get measuring values from the instrument. With :FETCh you get the values which are actually in the copied buffer for the interface. With :READ there are internally two commands executed: :INITiate:IMMediate and :FETCh (see also 9.2.6.3, ':IMMediate INIM' for further details).

If you request the same value twice with two :READ commands (e.g.
:READ:DC?;:READ:DC?) you get two different values of two different cycles. This can cause problems for example with following request:

:READ:VOLTAGE:DC?;:READ:CURRENT:DC?

The two values you get for Udc and Idc are measured in different cycles!

If you request the same value twice with two :FETCh commands you get the same values of the same cycle. For example :FETC:DC?;:FETC:DC? would not make any sense, because you will get the same value.

A usual request looks like this:

:READ:VOLTAGE:DC?;:FETC:CURRENT:DC?

In this case the instrument finishes the actual cycle, copies the values for the interface and returns the two requested values. This two values are measured in the same cycle!

The SHORT commands perform equal to the :FETCh commands (which means there is no INIM performed!). So if you want to perform the last example with SHORT commands you have to enter
INIM;UDC?;IDC?

9.2.4.1 [:SCALar]

9.2.4.1.1 :CURRent

:CALCulate			
:DISPlay			
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent \rightarrow	:AC
:FORMat		:CYCLe	:CFACtor
:INITiate		:DINPut	:DC
:INPut		:ENERgy	:FFACtor
:INSTrument		:FLICker	:INRush
:MEMory		:FREQuency	:MAXPk
:READ \rightarrow		:HARMonics	:MINPk
:SENSe		:POWer	:PPEak
:SOURce		:RESistance	:RECTify
:STATus		:SSYStem	:RUSed
:SYSTem		:VARiable	[:TRMS]
:TRIGger		[:VOLTage]	

9.2.4.1.1.1 :AC? IAC?

SCPI: :FETCh[:SCALar]:CURRent:AC? /qonly/ | :READ[:SCALar]:CURRent:AC? /qonly/
SHORT: IAC? /qonly/

ID:	lac	Mode:	Normal, CE-Harm
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the AC value of the current.
9.2.4.1.1.2 :CFACtor? ICF? Icf

SCPI: :FETCh[:SCALar]:CURRent:CFACtor?/qonly/ | :READ[:SCALar]:CURRent:CFACtor? /qonly/
SHORT: ICF?/qonly/

ID: Icf

Mode: Normal

Type:	float	Suffix:	$1 \ldots .14$
Value:	n/a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the crest factor of the current.

9.2.4.1.1.3 :DC? IDC? Idc

SCPI: :FETCh[:SCALar]:CURRent:DC? /qonly/ | :READ[:SCALar]:CURRent:DC? /qonly/
SHORT: IDC? /qonly/

ID:	ldc	Mode:	Normal, CE-Harm
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the DC value of the current.

9.2.4.1.1.4 :FFACtor? IFF? Iff

SCPI: :FETCh[:SCALar]:CURRent:FFACtor? /qonly/ | :READ[:SCALar]:CURRent:FFACtor? /qonly/ SHORT: IFF? /qonly/

ID:	Iff	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the form factor of the current.

9.2.4.1.1.5 :FSCale? FSI?

SCPI: :FETCh[:SCALar]:CURRent:FSCale? /qonly/ | :READ[:SCALar]:CURRent:FSCale? /qonly/ SHORT: FSI? /qonly/

ID:	n / a	Mode:	All
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	n / a
Unit:	A	Group:	n / a

Reads the full scale value of the current.

9.2.4.1.1.6 :INRush? IINR?
 linr

SCPI: :FETCh[:SCALar]:CURRent:INRush? /qonly/ | :READ[:SCALar]:CURRent:INRush? /qonly/
SHORT: IINR? /qonly/

ID:	linr	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the value of the inrush current. For reset see 9.2.14.2
9.2.4.1.1.7 :MAXPk? IMAX? Ipkp

SCPI: :FETCh[:SCALar]:CURRent:MAXPk? /qonly/ | :READ[:SCALar]:CURRent:MAXPk? /qonly/ SHORT: IMAX? /qonly/

ID:	lpkp	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the biggest sample value of the current.

9.2.4.1.1.8 :MINPk? IMIN? Ipkn

SCPI: :FETCh[:SCALar]:CURRent:MINPk? /qonly/ \| :READ[:SCALar]:CURRent:MINPk? /qonly/
SHORT: IMIN? /qonly/

ID:	lpkn	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the smallest sample value of the current.

9.2.4.1.1.9 :PHASe? IPHI? Iphi

SCPI: :FETCh[:SCALar]:CURRent:PHASe? /qonly/ | :READ[:SCALar]:CURRent:MINPk? /qonly/ SHORT: IPHI? /qonly/

ID:	n / a	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	\circ	Group:	n / a

Reads the phase angle of the current like displayed in the Fresnel diagram.
9.2.4.1.1.10 :PPEak? IPP? Ipp

SCPI: :FETCh[:SCALar]:CURRent:PPEak? /qonly/ | :READ[:SCALar]:CURRent:PPEak? /qonly/ SHORT: IPP? /qonly/

ID:	lpp	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n / a

Reads the peak peak value of the current.

9.2.4.1.1.11 :RECTify? IREC? Irect

SCPI: :FETCh[:SCALar]:CURRent:RECTify?/qonly/ | :READ[:SCALar]:CURRent:RECTify? /qonly/ SHORT: IREC? /qonly/

ID:	Irect	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the rectified value of the current.
9.2.4.1.1.12 :RUSed? OVRI? OvrI

SCPI: :FETCh[:SCALar]:CURRent:RUSed? /qonly/ | :READ[:SCALar]:CURRent:RUSed? /qonly/ SHORT: OVRI? /qonly/

ID: Ovrl
Type: float
Value: $\quad 0 . .100$ in \% Unit: n/a

Mode: All
Suffix: 1... 14
List: n/a
Group: n/a

Reads the usage of the current range.

9.2.4.1.1.13 [:TRMS?] ITRMS? Itrms

SCPI: :FETCh[:SCALar]:CURRent[:TRMS]? /qonly/ | :READ[:SCALar]:CURRent[:TRMS]? /qonly/ SHORT: ITRMS? /qonly/

ID:	ltrms	Mode:	All
Type:	float	Suffix:	$1 \ldots 18$
Value:	n / a	List:	n / a
Unit:	A	Group:	n / a

Reads the TRMS value of the current.

9.2.4.1.2 :CYCLe

$:$ CALCulate		
:DISPlay		
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent
:FORMat		:CYCLe \rightarrow
:INITiate	:DINPut	:TIME
:INPut	:ENERgy	
:INSTrument	:FLICker	
:MEMory	:FREQuency	
:READ \rightarrow	:HARMonics	
:SENSe	:POWer	
:SOURce	:RESistance	
:STATus	:SSYStem	
:SYSTem	:VARiable	
:TRIGger	[:VOLTage]	

9.2.4.1.2.1 :COUNt? COUNT?

SCPI: :FETCh[:SCALar]:CYCLe:COUNt? /qonly/ | :READ[:SCALar]:CYCLe:COUNt? /qonly/ SHORT: COUNT?/qonly/

ID:	Cnr	Mode:
Type:	float	
	Suffix:	n/a

Value: 0... 65535
List: n/a
Unit: $\quad \mathrm{n} / \mathrm{a}$ Group: n/a

Reads an individual number of the measuring cycle counter which is copied into memory. This value runs up to 65535 and starts then again at 0 .

9.2.4.1.2.2 :SNUMber? SCTC?

SCPI: :FETCh[:SCALar]:CYCLe:SNUMber? /qonly/ | :READ[:SCALar]:CYCLe:SNUMber? /qonly/ SHORT: SCTC? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 2^{31}-1$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the number of the last sample value of a cycle. The sample values of the instrument are counted. At the end of each cycle this counter is stored and can be read by this command. The counter runs up to $2^{31}-1$ and starts then again at 0 . See also 9.2.10.14.5, ':SCTRigger?

SCTT?'

9.2.4.1.2.3 :TIME? CYCR? Mtime

SCPI: :FETCh[:SCALar]:CYCLe:TIME? /qonly/| :READ[:SCALar]:CYCLe:TIME?/qonly/
SHORT: CYCR?/qonly/

ID:	Mtime	Mode:	Normal, CE-Harm, Flicker, HARM100
Type:	float	Suffix: $1 \ldots 14$	
Value:	n/a	List:	n/a
Unit:	s	Group: n / a	

Reads the real measuring time of the measuring cycle. This is the time for an integer number of periods of the measured signal (in average this is the cycle time, but it depends on the signal!).

9.2.4.1.3 :DINPut? DIST?

SCPI: :FETCh[:SCALar]:DINPut? /qonly/ | :READ[:SCALar]:DINPut? /qonly/
SHORT: DIST?/qonly/

ID:	digin(), see 4.4.4.2.7, 'Functions'	Mode:	All
Type:	long int	Suffix:	1,2
Value:	$0 \ldots 64$	List:	n/a
Unit:	n / a	Group:	n / a

Reads the status of the digital inputs. The bits in the answer have following meanings:
Bit 0: Input 1
Bit 1: Input 2
Bit 2: Input 3
Bit 3: Input 4

Bit 4: Input 5
Bit 5: Input 6

9.2.4.1.4 :ENERgy

:CALCulate			
$:$ DISPlay			
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent	
:FORMat		:CYCLe	
:INITiate	:DINPut		
:INPut	:ENERgy \rightarrow	[:ACTive]	
:INSTrument	:FLICker	:APPArent	
:MEMory	:FREQuency	:CHARge	
:READ \rightarrow	:HARMonics	:REACtive	
:SENSe	:POWer	:TIME	
:SOURce	:RESistance		
:STATus	:SSYStem		
:SYSTem	:VARiable		
:TRIGger	[:VOLTage]		

9.2.4.1.4.1 [:ACTive]? EP?

SCPI: :FETCh[:SCALar]:ENERgy[:ACTive]? /qonly/ | :READ[:SCALar]:ENERgy[:ACTive]? /qonly/ SHORT: EP? /qonly/

ID:	EP	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	n / a
Unit:	Wh	Group:	n / a

Reads the active energy (integrated active power).

9.2.4.1.4.2 :APParent? ES?

SCPI: :FETCh[:SCALar]:ENERgy:APPArent? /qonly/ | :READ[:SCALar]:ENERgy:APParent?
/qonly/
SHORT: ES? /qonly/

ID:	ES	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	VAh	Group:	n/a

Reads the apparent energy (integrated apparent power).

9.2.4.1.4.3 :CHARge?
 El?
 9

SCPI: :FETCh[:SCALar]:ENERgy:CHARge? /qonly/ | :READ[:SCALar]:ENERgy:CHARge? /qonly/ SHORT: EI? /qonly/

ID:	q	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	Ah	Group:	n/a

Reads the charge (integrated DC current).

9.2.4.1.4.4 :REACtive? EQ?

SCPI: :FETCh[:SCALar]:ENERgy:REACtive? /qonly/ |
:READ[:SCALar]:ENERgy:REACtive? /qonly/
SHORT: EQ? /qonly/

ID:	EQ	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	varh	Group:	n/a

Reads the reactive energy (integrated reactive power).

9.2.4.1.4.5 :TIME? INTR?

SCPI: :FETCh[:SCALar]:ENERgy:TIME? /qonly/| :READ[:SCALar]:ENERgy:TIME? /qonly/ SHORT: INTR?/qonly/

ID:	LoadOK	Mode:	Normal
Type:	long int	Suffix:	$1 \ldots 14$
Value:	$0 \ldots 2^{.31}-1$	List:	n / a
Unit:	ms	Group: n / a	

Reads the time of the running integration.

9.2.4.1.5 :FLICker

9.2.4.1.5.1 [:EUTest]

Selects the equipment under test measuring results. They are measured at the voltage input jacks.

:CALCulate				
:DISPlay				
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent		
:FORMat		:CYCLe		
:INITiate		:DINPut		
:INPut		:ENERgy		
:INSTrument		:FLICker \rightarrow	[:EUTest] \rightarrow	:APMoment
:MEMory		:FREQuency	:LTRemain	:DC
:READ \rightarrow		:HARMonics	:PHWave	:DELTat
:SENSe		:POWer	:SOURce	:DMAX
:SOURce		:RESistance	:STATe	:HWTRms
:STATus		:SSYStem	:STRemain	:PLT
:SYSTem		:VARiable		:PMOMentary
:TRIGger		[:VOLTage]		:PST
				:RESult

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:APMoment? /qonly/ | :READ[:SCALar]:FLICker[:EUTest]:APMoment? /qonly/

SHORT: FLMO? /qonly/

ID:	Pmoml	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the averaged momentary flicker level of the equipment under test. It is averaged over 16 periods.

9.2.4.1.5.1.2 :DC? FLDC? dcl

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DC?/qonly/| :READ[:SCALar]:FLICker[:EUTest]:DC? /qonly/
SHORT: FLDC? /qonly/

ID:	dcl	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots . .8$
Value:	in \%	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{d}_{\underline{c}}$ value of the equipment under test.

9.2.4.1.5.1.3 :DELTat?
 FLDT?

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DELTat? /qonly/ <list>| :READ[:SCALar]:FLICker[:EUTest]:DELTat? /qonly/ <list>
SHORT: FLDT? /qonly/ <list>

ID:	dtl	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots .8$
Value:	in $\%$	List:	$0 \ldots .31$
Unit:	n/a	Group:	n / a

Reads the $\underline{\mathrm{d}(\mathrm{t})}$ values of the equipment under test. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.5.1.4 :DMAX?
 FLDX?
 dmaxI

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DMAX? /qonly/ | :READ[:SCALar]:FLICker[:EUTest]:DMAX? /qonly/
SHORT: FLDX?/qonly/

ID:	dmaxl	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots . .8$
Value:	in $\%$	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{\mathrm{d}}_{\text {max }}$ value of the equipment under test.

9.2.4.1.5.1.5 :DTMViolation? FLMV?

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DTMViolation? /qonly/ |
:READ[:SCALar]:FLICker[:EUTest]:DTMViolation? /qonly/
SHORT: FLMV? /qonly/

ID:	n / a	Mode:	Flicker
Type:	long int	Suffix:	$1 \ldots .8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the maximum number of half waves for which the $\mathrm{d}(\mathrm{t})$ of the equipment under test was bigger than allowed in the standard.

9.2.4.1.5.1.6 :HWTRms? FLRM? Uhwl

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:HWTRms? /qonly/ <list> | :READ[:SCALar]:FLICker[:EUTest]:HWTRms? /qonly/ <list>
SHORT: FLRM? /qonly/ <list>

ID:	Uhwl	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots .8$
Value:	n/a	List:	$0 \ldots .31$
Unit:	V	Group:	n/a

Reads the half wave TRMS values of the equipment under test. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.5.1.7 :PLT?
 FLLT?

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:PLT? /qonly/ | :READ[:SCALar]:FLICker[:EUTest]:PLT? /qonly/
SHORT: FLLT? /qonly/

ID:	Pltl	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots . .8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the $\underline{\mathrm{P}}_{\mathrm{lt}}$ value of the equipment under test.

9.2.4.1.5.1.8 :PMOMentary?
 FLMS?
 Pml

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:PMOMentary?/qonly/ <list> |
:READ[:SCALar]:FLICker[:EUTest]:PMOMentary? /qonly/ <list>
SHORT: FLMS? /qonly/ <list>

ID:	Pml	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	$0 . . .31$
Unit:	n/a	Group:	n/a

Reads the momentary flicker level of the equipment under test. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.5.1.9 :PST? FLST?

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:PST? /qonly/ | :READ [:SCALar]:FLICker[:EUTest]:PST? /qonly/
SHORT: FLST?/qonly/

ID:	Pstl	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots . .8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{\mathrm{P}}_{\mathrm{st}}$ value of the equipment under test.

9.2.4.1.5.1.10 :RESult?
 FLRE?
 LoadOK

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:RESult?/qonly/ | :READ[:SCALar]:FLICker[:EUTest]:RESult? /qonly/
SHORT: FLRE? /qonly/

ID:	n/a	Mode:	Flicker
Type:	long int	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the result of the flicker measuring at the equipment under test.
Bit 0: Set if the total evaluation of the flicker fails (=if any of the sub evaluation fails). Cleared otherwise.
Bit 1: Set if at least one $\mathrm{P}_{\text {st }}$ value was >1.0, cleared otherwise.
Bit 2: Set if the P_{lt} value was >0.65 at the END of the measuring interval, cleared otherwise.
Bit 3: Set if $\mathrm{d}_{\text {max }}$ was bigger than limit, cleared otherwise.
Bit 4: Set if $\mathrm{d}(\mathrm{t})$ was $>3 \%$ for more than allowed time, cleared otherwise.
Bit 5: Set if d_{c} was $>3 \%$, cleared otherwise.

9.2.4.1.5.2 :LTRemain?
 FLTR?

SCPI: :FETCh[:SCALar]:FLICker:LTRemain?/qonly/|
:READ[:SCALar]:FLICker:LTRemain? /qonly/
SHORT: FLTR?/qonly/

ID:	n/a	Mode:	Flicker
Type:	long int	Suffix:	n/a
Value:	n / a	List:	n / a
Unit:	s	Group:	n / a

Reads the remaining long time for the flicker measurement.

9.2.4.1.5.3 :PHWave?
 FLPH?
 Phw

SCPI: :FETCh[:SCALar]:FLICker:PHWave? /qonly/ <list> |
:READ[:SCALar]:FLICker:PHWave? /qonly/ <list>
SHORT: FLPH? /qonly/ <list>

ID:	Phw	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	$0 . .31$
Unit:	W	Group:	n/a

Reads the half wave power values. After each measuring cycle over 16 periods you can get 32 values. To get a correct value it is necessary to measure the current with the current channel and not the voltage of a source!

9.2.4.1.5.4 :SOURce

Selects the source's measuring results. They are measured at the current input jacks.

:CALCulate				
:DISPlay \cdot FETCh \rightarrow	$[: S C A L a r] \rightarrow$	-CURRent		
:FORMat		:CYCLe		
:INITiate		:DINPut		
:INPut		:ENERgy		
:INSTrument		:FLICker \rightarrow	[:EUTest]	
:MEMory		:FREQuency	:LTRemain	
:READ \rightarrow		:HARMonics	:PHWave	
:SENSe		:POWer	:SOURce \rightarrow	:APMoment
:SOURce		:RESistance	:STATe	:DC
:STATus		:SSYStem	:STRemain	:DELTat
:SYSTem		:VARiable		:DMAX
:TRIGger		[:VOLTage]		:HWTRms
				:PLT
				:PMOMentary
				:PST
				:RESult

9.2.4.1.5.4.1 :APMoment? FSMO?
 Pmoms

SCPI: :FETCh[:SCALar]:FLICker:SOURce:APMoment?/qonly/ | :READ[:SCALar]:FLICker:SOURce:APMoment? /qonly/
SHORT: FSMO? /qonly/

ID:	Pmoms	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the averaged momentary flicker level of the source. It is averaged over 16 periods.
9.2.4.1.5.4.2 :DC? FSDC? dcs

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DC? /qonly/ |
:READ[:SCALar]:FLICker:SOURce:DC? /qonly/
SHORT: FSDC? /qonly/

ID:	dcs	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	in $\%$	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{\mathrm{d}}_{\underline{c}}$ value of the source.

9.2.4.1.5.4.3 :DELTat? FSDT? dts

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DELTat? /qonly/ <list>| :READ[:SCALar]:FLICker:SOURce:DELTat? /qonly/ <list>
SHORT: FSDT? /qonly/ <list>

ID:	dts	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots .8$
Value:	in $\%$	List:	$0 \ldots . .31$
Unit:	n/a	Group:	n/a

Reads the $\underline{d(t)}$ values of the source. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.5.4.4 :DMAX?
 FSDX?

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DMAX?/qonly/| :READ[:SCALar]:FLICker:SOURce:DMAX? /qonly/
SHORT: FSDX? /qonly/

ID:	dmaxs	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	in \%	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{\mathrm{d}}_{\text {max }}$ value of the source.

9.2.4.1.5.4.5 :DTMViolation? FSMV?

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DTMViolation?/qonly/|
:READ[:SCALar]:FLICker:SOURce:DTMViolation? /qonly/
SHORT: FSMV? /qonly/

ID:	n / a	Mode:	Flicker
Type:	long int	Suffix:	$1 \ldots .8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the maximum number of half waves for which the $\mathrm{d}(\mathrm{t})$ of the source was bigger than allowed in the standard.

9.2.4.1.5.4.6 :HWTRms?
 FSRM?
 Uhws

SCPI: :FETCh[:SCALar]:FLICker:SOURce:HWTRms? /qonly/ <list> |
:READ[:SCALar]:FLICker:SOURce:HWTRms? /qonly/ <list>
SHORT: FSRM? /qonly/ <list>

ID:	Uhws	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	$0 . .31$
Unit:	V or A depending on measured signal	Group:	n/a

Reads the half wave TRMS values of the source. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.5.4.7 :PLT? FSLT?

SCPI: :FETCh[:SCALar]:FLICker:SOURce:PLT? /qonly/ | :READ[:SCALar]:FLICker:SOURce:PLT? /qonly/
SHORT: FSLT?/qonly/

ID:	Plts	Mode:	Flicker
Type:	float	Suffix:	n/a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{\mathrm{P}}_{\mathrm{tt}}$ value of the source.

9.2.4.1.5.4.8 :PMOMentary? FSMS?

SCPI: :FETCh[:SCALar]:FLICker:SOURce:PMOMentary? /qonly/ <list>| :READ[:SCALar]:FLICker:SOURce:PMOMentary? /qonly/ <list>
SHORT: FSMS? /qonly/ <list>

ID:	Pms	Mode:	Flicker
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	$0 . .31$
Unit:	n/a	Group:	n/a

Reads the momentary flicker level of the source. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.5.4.9 :PST?
 FSST?

SCPI: :FETCh[:SCALar]:FLICker:SOURce:PST? /qonly/| :READ[:SCALar]:FLICker:SOURce:PST? /qonly/
SHORT: FSST? /qonly/

ID:	Psts	Mode:	Flicker
Type:	float	Suffix:	n/a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the $\underline{\mathrm{P}}_{\underline{s t}}$ value of the source.

9.2.4.1.5.4.10 :RESult?
 FSRE?
 SrcOK

SCPI: :FETCh[:SCALar]:FLICker:SOURce:RESult?/qonly/ | :READ[:SCALar]:FLICker:SOURce:RESult? /qonly/
SHORT: FSRE?/qonly/

ID:	n / a	Mode:	Flicker
Type:	long int	Suffix:	$1 \ldots . .8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the result of the flicker measuring at the source.
Bit 0: Set if the total evaluation of the flicker fails (=if any of the sub evaluation fails). Cleared otherwise.
Bit 1: Set if at least one P_{st} value was >1.0, cleared otherwise.
Bit 2: Set if the $P_{l t}$ value was >0.65 at the END of the measuring interval, cleared otherwise.
Bit 3: Set if $\mathrm{d}_{\max }$ was bigger than limit, cleared otherwise.
Bit 4: Set if $\mathrm{d}(\mathrm{t})$ was $>3 \%$ for more than allowed time, cleared otherwise.
Bit 5: Set if d_{c} was $>3 \%$, cleared otherwise.

9.2.4.1.5.5 :STATe? FSTA?

SCPI: :FETCh[:SCALar]:FLICker:STATe? /qonly/ | :READ[:SCALar]:FLICker:STATe? /qonly/
SHORT: FSTA? /qonly/

ID:	n/a	Mode:	Flicker
Type:	long int	Suffix:	n/a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the state of the flicker measuring.
0: Reset
1: Wait
2: Run
3: Stop

9.2.4.1.5.6 :STRemain?

FSTR?
SCPI: :FETCh[:SCALar]:FLICker:STRemain? /qonly/ | :READ[:SCALar]:FLICker:STRemain? /qonly/
SHORT: FSTR? /qonly/

ID:	n/a	Mode:	Flicker
Type:	long int	Suffix:	n/a
Value:	n/a	List:	n / a
Unit:	s	Group:	n/a

Reads the remaining short time for the actual short term measurement.

9.2.4.1.6 FREQuency

:CALCulate			
:DISPlay	[:SCALar] \rightarrow	:CURRent	
:FETCh \rightarrow		:CYCLe	
:FORMat	:DINPut		
:INITiate	:ENERgy		
:INPut	:FLICker		
:INSTrument	:FREQuency \rightarrow	: FINPut	
:MEMory	:HARMonics	:SAMPle	
:READ \rightarrow	:POWer	[:SSOurce]	
:SENSe	:RESistance		
:SOURce	:SSYStem		
:STATus	:VARiable		
:SYSTem	[:VOLTage]		
:TRIGger			

9.2.4.1.6.1 :FINPut? DIFQ? DigFrq

SCPI: :FETCh[:SCALar]:FREQuency:FINPut? /qonly/ | :READ[:SCALar]:FREQuency:FINPut? /qonly/
SHORT: DIFQ?/qonly/

ID:	DigFrq	Mode:	All
Type:	float	Suffix:	1,2
Value:	n / a	List:	n / a
Unit:	Hz	Group:	n / a

Reads the value of frequency input of the processing signal interface.

9.2.4.1.6.2 :SAMPle?
 SMPL?

SCPI: :FETCh[:SCALar]:FREQuency:SAMPle? /qonly/ | :READ[:SCALar]:FREQuency:SAMPLe? /qonly/
SHORT: SMPL? /qonly/

ID:	n/a	Mode:	All
Type:	float	Suffix:	n / a
Value:	n/a	List:	n/a
Unit:	Hz	Group:	optional $[,<$ NRi $>], 0=A, 1=B, \ldots$

Reads the sampling frequency of the LMG.

9.2.4.1.6.3 :SSOurce?
 FREQ?

SCPI: :FETCh[:SCALar]:FREQuency[:SSOurce]? /qonly/ |
:READ[:SCALar]:FREQuency[:SSOurce]? /qonly/
SHORT: FREQ? /qonly/

ID:	f	Mode:	All
Type:	float	Suffix:	$1 \ldots 18$
Value:	n / a	List:	n / a
Unit:	Hz	Group:	n / a

Reads the frequency of the synchronisation source

9.2.4.1.7 :HARMonics

:CALCulate			
:DISPlay			
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent	
:FORMat		:CYCLe	
:INITiate		:DINPut	
:INPut		:ENERgy	
:INSTrument		:FLICker	
:MEMory		:FREQuency	
:READ \rightarrow		:HARMonics \rightarrow	:AMPFactor
:SENSe		:POWer	:AMPower
:SOURce		:RESistance	:APFactor
:STATus		:VARiable	:APower
:SYSTem		[:VOLTage]	:CDResult
:TRIGger			:CURRent
			:LTRemain
			:POWer
			[:VOLTage]

9.2.4.1.7.1 :AMPFactor? HPFM?

SCPI: :FETCh[:SCALar]:HARMonics:AMPFactor?/qonly/ |
:READ[:SCALar]:HARMonics:AMPFactor? /qonly/
SHORT: HPFM?/qonly/

ID:	n/a	Mode:	CE
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the maximum smoothed power factor of the harmonic measuring.

9.2.4.1.7.2 :AMPower? HPM?

SCPI: :FETCh[:SCALar]:HARMonics:AMPower? /qonly/ |
:READ[:SCALar]:HARMonics:AMPower? /qonly/
SHORT: HPM? /qonly/

ID:	n / a	Mode:	CE
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	W	Group:	n / a

Reads the maximum smoothed power of the harmonic measuring.

9.2.4.1.7.3 :APFactor? HPFA?

SCPI: :FETCh[:SCALar]:HARMonics:APFactor? /qonly/ | :READ[:SCALar]:HARMonics:APFactor? /qonly/
SHORT: HPFA? /qonly/

ID:	n/a	Mode:	CE
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the smoothed power factor of the harmonic measuring.

9.2.4.1.7.4 :APOWer? HPAV?

SCPI: :FETCh[:SCALar]:HARMonics:APOWer? /qonly/ |
:READ[:SCALar]:HARMonics:APOWer? /qonly/
SHORT: HPAV?/qonly/

ID:	n / a	Mode:	CE
Type:	float	Suffix:	$1 \ldots .8$
Value:	n / a	List:	n / a
Unit:	W	Group:	n / a

Reads the smoothed power of the harmonic measuring.

9.2.4.1.7.5 :CDResult? HENS?

SCPI: :FETCh[:SCALar]:HARMonics:CDResult? /qonly/ | :READ[:SCALar]:HARMonics:CDResult? /qonly/
SHORT: HENS? /qonly/

ID:	n / a	Mode:	CE
Type:	long int	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the class D result of the harmonic measuring:
Bit 0: Set if the total class D evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.
Bit 1: Set if the current was for $<95 \%$ of time under the positive special envelop, cleared otherwise.
Bit 2: Set if the current was for $<95 \%$ of time under the negative special envelop, cleared otherwise.
Bit 3: Set if $\mathrm{P}>600 \mathrm{~W}$, cleared otherwise.
Bit 4: Set if the total class C evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.
Bit 5: Set if the 60° condition failed in first halfwave. Cleared otherwise.
Bit 6: Set if the 65° condition failed in first halfwave. Cleared otherwise.
Bit 7: Set if the 90° condition failed in first halfwave. Cleared otherwise.
Bit 8: Set if the peak value in first halfwave is negative. Cleared otherwise.
Bit 9: Set if the 60° condition failed in second halfwave. Cleared otherwise.
Bit 10: Set if the 65° condition failed in second halfwave. Cleared otherwise.
Bit 11: Set if the 90° condition failed in second halfwave. Cleared otherwise.
Bit 12: Set if the peak value in second halfwave is negative. Cleared otherwise.

9.2.4.1.7.6 :CURRent

```
:CALCulate
:DISPlay
```


9.2.4.1.7.6.1 :AAMPlitude? HIAV? laver

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:AAMPlitude? /qonly/ <list> |
:READ[:SCALar]:HARMonics:CURRent:AAMPlitude? /qonly/ <list>
SHORT: HIAV? /qonly/ <list>

ID:	laver	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	$0 \ldots 40$ for harmonic order
Unit:	A	Group:	n/a

Reads the average amplitude of the harmonics of the current.

9.2.4.1.7.6.2 :AFUNdamental? HIFM?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:AFUNdamental? /qonly/ |
:READ[:SCALar]:HARMonics:CURRent:AFUNdamental? /qonly/
SHORT: HIFM? /qonly/

ID:	n / a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	A	Group:	n / a

Reads the maximum averaged fundamental current of the harmonics.

9.2.4.1.7.6.3 :AMPLitude? HIAM?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:AMPLitude? /qonly/ <list> |
:READ[:SCALar]:HARMonics:CURRent:AMPLitude? /qonly/ <list>

SHORT: HIAM? /qonly/ <list>

ID:	lh	Mode:	CE-Harm, HARM100
Type:	float	Suffix:	$1 \ldots 8($ CE-Harm $), 1 \ldots 14($ HARM100 $)$
Value:	n/a	List:	$0 \ldots 40 / 99$ (CE-Harm/HARM100) for order
Unit:	A	Group:	n/a

Reads the amplitude of the harmonics of the current.

9.2.4.1.7.6.4 :FPRotz? HFMX?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:FPRotz? /qonly/ <list> |
:READ[:SCALar]:HARMonics:CURRent:FPRotz? /qonly/ <list>
SHORT: HFMX? /qonly/ <list>

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	in $\%$	List:	$0 \ldots .40$ for harmonic order
Unit:	n/a	Group:	n/a

Reads the maximum duration in percent of a 2.5 minute window while each harmonic was over the 100% limit.

9.2.4.1.7.6.5 :FRESult? HIFL?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:FRESult? /qonly/ <list> | :READ[:SCALar]:HARMonics:CURRent:FRESult? /qonly/ <list>
SHORT: HIFL? /qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 2^{24}-1$	List:	0,1 for array element
Unit:	n / a	Group:	n / a

Reads the long time result of the fluctuating harmonics of the current. This is an array of 2 long numbers, so that you get a 64 bit result, if you read out both elements. Each bit from 0 to 40 indicates, if the corresponding harmonic has at least one time while the measuring violated the limit for more than 10% of a 2.5 minute window.

9.2.4.1.7.6.6 :GFResult?
 HIGF?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:GFResult?/qonly/ | :READ[:SCALar]:HARMonics:CURRent:GFResult? /qonly/
SHORT: HIGF?/qonly/

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n/a
Unit:	n / a	Group:	n / a

Reads the global final result of the current check.

Bit 0: Set if the total current evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.
Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.
Bit 2: Set if the fluctuating harmonics were for more than 10% of the 2.5 minute window between 100% and 150% of the limit. Cleared otherwise.
Bit 3: Set if questionable vales (with '?') have occurred. Cleared otherwise.
Bit 4: Set if measured power was > 110% of defined power. Cleared otherwise. This is only a warning, not an error.
Bit 5: Set if measured power factor was > 110% of defined power factor. Cleared otherwise. This is only a warning, not an error.
Bit 6: Set if measured fundamental current was $>110 \%$ of defined fundamental current.
Cleared otherwise. This is only a warning, not an error.
Bit 7: Set if measured power was < 90% of defined power. Cleared otherwise.
Bit 8: Set if measured power factor was < 90% of defined power factor. Cleared otherwise.
Bit 9: Set if measured fundamental current was $<90 \%$ of defined fundamental current. Cleared otherwise.
Bit 10: Set if any harmonic is $>150 \%$ of limits. Cleared otherwise.
Bit 11: Set if the THD condition of EN61000-3-12 failed. Cleared otherwise.

9.2.4.1.7.6.7 :IAMPlitude? HIZA?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:IAMPlitude? /qonly/ <list>|
:READ[:SCALar]:HARMonics:CURRent:IAMPlitude? /qonly/ <list>
SHORT: HIZA? /qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots .8$
Value:	n / a	List:	$0 . .5$ for interharmonics number relative
			to start position
Unit:	A	Group:	n / a

Reads the interharmonics of the current in CE-HRM mode. To define the analysis area see command 9.2.10.8.2, ':ISTart HNRZ'

9.2.4.1.7.6.8 :LIMit? HILM? IL

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:LIMit? /qonly/ <list> |
:READ[:SCALar]:HARMonics:CURRent:LIMit? /qonly/ <list>
SHORT: HILM? /qonly/ <list>

ID:	IL	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	$0 \ldots 40$ for order
Unit:	A	Group:	n / a

Reads the limits of the harmonics of the current.

9.2.4.1.7.6.9 :LTResult? HILT?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:LTResult?/qonly/ <list> :READ[:SCALar]:HARMonics:CURRent:LTResult? /qonly/ <list>
SHORT: HILT? /qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 2^{41}-1$	List:	0,1 for array element
Unit:	n / a	Group:	n / a

Reads the long time result of the harmonics of the current. This is an array of 2 long numbers, so that you get a 64 bit result, if you read out both elements. Each bit from 0 to 40 indicates, if the corresponding harmonic has at least one time while the measuring violated the limit.

9.2.4.1.7.6.10 :OLIMit? HIOV?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:OLIMit?/qonly/ <list> |
:READ[:SCALar]:HARMonics:CURRent:OLIMit? /qonly/ <list>
SHORT: HIOV? /qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 2^{41}-1$	List:	$0 \ldots 3$ for array element
Unit:	n / a	Group:	n / a

Reads the over limit status of the harmonics of the current. This is an array of 4 long numbers, so that you get two 64 bit results, if you read out the elements $0 / 1$ or $2 / 3$.
For array element $2 / 3$ each bit from 0 to 40 indicates, if the corresponding harmonic has violated the limit in the actual frame ('!' on LMG display).
For array element $0 / 1$ each bit from 0 to 40 indicates, if the corresponding harmonic has violated the 100% limit but is within the 150% limit in the actual frame ('?' on LMG display).

9.2.4.1.7.6.11 :PHASe?
 HIPH?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:PHASe? /qonly/ <list> | :READ[:SCALar]:HARMonics:CURRent:PHASe? /qonly/ <list>
SHORT: HIPH? /qonly/ <list>

ID:	IP	Mode:	HARM100
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	$0 \ldots 99$ for order
Unit:	\circ	Group:	n / a

Reads the phase of the harmonics of the current.

9.2.4.1.7.6.12 :POHarmonic?
 HPOC?
 Ipohc

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:POHarmonic? /qonly/|
:READ[:SCALar]:HARMonics:CURRent:POHarmonic? /qonly/
SHORT: HPOC? /qonly/

ID:	lpohc	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the Partial Odd Harmonic Current.

9.2.4.1.7.6.13 :POLimit? HLIP?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:POLimit? /qonly/ | :READ[:SCALar]:HARMonics:CURRent:POLimit? /qonly/
SHORT: HLIP? /qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the partial odd harmonic current which is calculated from the limits at the end of a measuring.

9.2.4.1.7.6.14 :SAVerage? HIAS?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:SAVerage? /qonly/ | :READ[:SCALar]:HARMonics:CURRent:SAVerage? /qonly/
SHORT: HIAS? /qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the smoothed averaged TRMS current.

9.2.4.1.7.6.15 :SMOothed? HIMA?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:SMOothed? /qonly/ |
:READ[:SCALar]:HARMonics:CURRent:SMOothed? /qonly/
SHORT: HIMA? /qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the smoothed TRMS current in this measuring mode.

9.2.4.1.7.6.16 :STATe? HIST?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:STATe? /qonly/ | :READ[:SCALar]:HARMonics:CURRent:STATe? /qonly/
SHORT: HIST? /qonly/

ID:	n/a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the actual result of the current check:
Bit 0: Set if the total current evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.
Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.
Bit 2: Set if the fluctuating harmonics were for more than 10% of the 2.5 minute window between 100% and 150% of the limit. Cleared otherwise.
Bit 3: Set if questionable vales (with '?') have occurred. Cleared otherwise.
Bit 10: Set if any harmonic is > 150% of limits. Cleared otherwise.

9.2.4.1.7.6.17 :THARmonic? HTHC? Ithc

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:THARmonic? /qonly/
:READ[:SCALar]:HARMonics:CURRent:THARmonic?/qonly/
SHORT: HTHC? /qonly/

ID:	lthc	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads the Total Harmonic Current.

9.2.4.1.7.6.18 :THDistort? HIHD?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:THDistort? /qonly/
:READ[:SCALar]:HARMonics:CURRent:THDistort? /qonly/
SHORT: HIHD? /qonly/

ID:	lthd	Mode:	CE-Harm, Flicker, HARM100
Type:	float	Suffix:	$1 \ldots 8 / 12$
Value:	in $\%$	List:	n/a
Unit:	n / a	Group:	n / a

Reads the THD of the current.

9.2.4.1.7.7 :LTRemain? HLTR?

SCPI: :FETCh[:SCALar]:HARMonics:LTRemain? /qonly/ |
:READ[:SCALar]: HARMonics:LTRemain? /qonly/
SHORT: HLTR? /qonly/

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	n/a
Value:	n / a	List:	n / a
Unit:	s	Group:	n / a

Reads the remaining long time for the harmonic measurement.

9.2.4.1.7.8 :POWer

:CALCulate				
:DISPlay				
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent		
:FORMat		:CYCLe		
:INITiate		:DINPut		
:INPut		:ENERgy		
:INSTrument		:FLICker		
:MEMory		:FREQuency		
:READ \rightarrow		:HARMonics \rightarrow	:AMPower	
:SENSe		:POWer	:APFactor	
:SOURce		:RESistance	:CDResult	
:STATus		SSYStem	:CURRent	
:SYSTem		:VARiable	:LTRemain	
:TRIGger		[:VOLTage]	$: \text { POWer } \rightarrow$	
			[:VOLTage]	:APParent :REACtive

9.2.4.1.7.8.1 :ACTive?
 HPAM?

SCPI: :FETCh[:SCALar]:HARMonics:POWer:ACTive? /qonly/ <list> | :READ[:SCALar]:HARMonics:POWer:ACTive? /qonly/ <list>
SHORT: HPAM? /qonly/ <list>

ID:	Ph	Mode:	HARM100
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	$0 \ldots 99$ for order
Unit:	W	Group:	n / a

Reads the harmonics of the active power.

9.2.4.1.7.8.2 :APParent? HSAM? Sh

SCPI: :FETCh[:SCALar]:HARMonics:POWer:APParent?/qonly/ <list> | :READ[:SCALar]:HARMonics:POWer:APParent? /qonly/ <list>
SHORT: HSAM? /qonly/ <list>

ID:	Sh	Mode:	HARM100
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	$0 \ldots 99$ for order
Unit:	VA	Group:	n/a

Reads the harmonics of the apparent power.

9.2.4.1.7.8.3 :DISTortion? D?

D
SCPI: :FETCh[:SCALar]:HARMonics:POWer:DISTortion?/qonly/ | :READ[:SCALar]:HARMonics:POWer:Distortion? /qonly/
SHORT: D? /qonly/

ID:	D	Mode:	CE-Harm, HARM100
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	var	Group:	n/a

Reads the distortion power.

9.2.4.1.7.8.4 :REACtive? HQAM? Qh

SCPI: :FETCh[:SCALar]:HARMonics:POWer:REACtive? /qonly/ <list> |
:READ[:SCALar]:HARMonics:POWer:REACtive? /qonly/ <list>
SHORT: HQAM? /qonly/ <list>

ID:	Qh	Mode:	HARM100
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	$0 \ldots 99$ for order
Unit:	var	Group:	n / a

Reads the harmonics of the reactive power.

9.2.4.1.7.9 [:VOLTage]

:CALCulate				
:DISPlay				
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent		
:FORMat		:CYCLe		
:INITiate		:DINPut		
:INPut		:ENERgy		
:INSTrument		:FLICker		
:MEMory		:FREQuency		
:READ \rightarrow		:HARMonics \rightarrow	:AMPower	
:SENSe		:POWer	:APFactor	
:SOURce		:RESistance	:CDResult	
:STATus		:SSYStem	:CURRent	
:SYSTem		:VARiable	:LTRemain	
:TRIGger		[:VOLTage]	:Power	
			[:VOLTage] \rightarrow	:AMPLitude
				:GFResult
				:LIMit
				:LTResult
				:MAMPlitude
				:OLIMit
				:PHASe
				:STATe
				:THDistortion

9.2.4.1.7.9.1 :AMPLitude? HUAM?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:AMPLitude? /qonly/ <list> | :READ[:SCALar]:HARMonics[:VOLTage]:AMPLitude? /qonly/ <list>
SHORT: HUAM? /qonly/ <list>

ID:	Uh	Mode:	CE-Harm, HARM100
Type:	float	Suffix:	$1 \ldots 8($ CE-Harm $), 1 \ldots 14$ (HARM100)
Value:	n/a	List:	$0 \ldots 40 / 99$ (CE-Harm/HARM100) for order
Unit:	V	Group:	n/a

Reads the amplitude of the harmonics of the voltage.

9.2.4.1.7.9.2 :GFResult? HUGF?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:GFResult?/qonly/ | :READ[:SCALar]:HARMonics[:VOLTage]:GFResult? /qonly/
SHORT: HUGF?/qonly/

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the global final result of the voltage check.
Bit 0: Set if the total voltage evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.
Bit 1: Set if any of the harmonics was $>100 \%$ of the allowed limit, cleared otherwise.
Bit 2: Set if the voltage amplitude was not within the limit, cleared otherwise.
Bit 3: Set if the frequency was not within the limit, cleared otherwise.
Bit 4: Set if the crest factor was not within the limit, cleared otherwise.
Bit 5: Set, if the peak value is not within $90^{\circ} \pm 3^{\circ}$

9.2.4.1.7.9.3 :HWCFactor? FLCF?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: HWCFactor? /qonly/ <list>| :READ[:SCALar]:HARMonics[:VOLTage]: HWCFactor? /qonly/ <list>
SHORT: FLCF? /qonly/ <list>

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	$0 \ldots 31$ for half wave number
Unit:	n/a	Group:	n / a

Reads the voltage crest factor of the half waves. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.7.9.4 :IAMPlitude? HUZA?

SCPI: :FETCh[:SCALar]:HARMonics:VOLTage:IAMPlitude? /qonly/ | :READ[:SCALar]:HARMonics:VOLTage:IAMPlitude? /qonly/
SHORT: HUZA? /qonly/

ID:	n / a	Mode:	CE-Harm
Type:	float	Suffix:	$0 \ldots 8$
Value:	n / a	List:	$0 \ldots 5$ for interharmonics number relative
			to start position
Unit:	V	Group:	n / a

Reads the interharmonics of the voltage. To define the analysis area see command 9.2.10.8.2, ‘:ISTart HNRZ'

9.2.4.1.7.9.5 :LIMit? HULM? UL

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:LIMit? /qonly/ <list> | :READ[:SCALar]:HARMonics[:VOLTage]:LIMit? /qonly/ <list>
SHORT: HULM?/qonly/ <list>

ID:	UL	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	$0 \ldots 40$ for order
Unit:	V	Group:	n / a

Reads the limits of the harmonics of the voltage.

9.2.4.1.7.9.6 :LTResult? HULT?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:LTResult? /qonly/ <list> | :READ[:SCALar]:HARMonics[:VOLTage]:LTResult? /qonly/ <list>
SHORT: HULT? /qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 2^{41}-1$	List:	0,1 for array element
Unit:	n / a	Group:	n / a

Reads the long time result of the harmonics of the voltage. This is an array of 2 long numbers, so that you get a 64 bit result, if you read out both elements. Each bit from 0 to 40 indicates, if the corresponding harmonic has at least one time while the measuring violated the limit.

9.2.4.1.7.9.7 :MAMPlitude? HUMX? UMax

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:MAMPlitude? /qonly/ <list> | :READ[:SCALar]:HARMonics[:VOLTage]:MAMPlitude? /qonly/ <list>
SHORT: HUMX? /qonly/ <list>

ID:	UMax	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	$0 \ldots 40$ for order
Unit:	V	Group:	n / a

Reads the maximum amplitude of the harmonics of the voltage.

9.2.4.1.7.9.8 :MAXCfactor? FLCX?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MAXCfactor? /qonly/ |
:READ[:SCALar]:HARMonics[:VOLTage]: MAXCfactor?/qonly/
SHORT: FLCX? /qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the maximum crest factor of the voltage.

9.2.4.1.7.9.9 :MAXPhi? FLPX?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MAXPhi? /qonly/ | :READ[:SCALar]:HARMonics[:VOLTage]: MAXPhi? /qonly/
SHORT: FLPX?/qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	\circ	Group:	n/a

Reads the maximum phase of peak value of the voltage.

9.2.4.1.7.9.10 :MINCfactor? FLCN?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MINCfactor? /qonly/ | :READ[:SCALar]:HARMonics[:VOLTage]: MINCfactor? /qonly/
SHORT: FLCN? /qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the minimum crestfactor of the voltage.

9.2.4.1.7.9.11 :MINPhi? FLPN?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MINPhi? /qonly/ | :READ[:SCALar]:HARMonics[:VOLTage]: MINPhi? /qonly/
SHORT: FLPN?/qonly/

ID:	n/a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	\circ	Group:	n/a

Reads the minimum phase of peak value of the voltage.

9.2.4.1.7.9.12 :OLIMit? HUOV?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:OLIMit?/qonly/ <list> |
:READ[:SCALar]:HARMonics[:VOLTage]:OLIMit? /qonly/ <list>
SHORT: HUOV?/qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 2^{41}-1$	List:	$0 \ldots 3$ for array element
Unit:	n / a	Group:	n / a

Reads the over limit status of the harmonics of the voltage. This is an array of 4 long numbers, so that you get two 64 bit results, if you read out the elements $0 / 1$ or $2 / 3$.
For array element $2 / 3$ each bit from 0 to 40 indicates, if the corresponding harmonic has
violated the limit in the actual frame ('!' on LMG display).
Array elements $0 / 1$ are not used.

9.2.4.1.7.9.13 :PHASe?
 HUPH?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:PHASe? /qonly/ <list> | :READ[:SCALar]:HARMonics[:VOLTage]:PHASe? /qonly/ <list>
SHORT: HUPH? /qonly/ <list>

ID:	UP	Mode:	HARM100
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	$0 \ldots 99$ for order
Unit:	\circ	Group:	n / a

Reads the phase of the harmonics of the voltage.

9.2.4.1.7.9.14 :PPHase? FLUP?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: PPHase? /qonly/ <list>| :READ[:SCALar]:HARMonics[:VOLTage]: PPHase? /qonly/ <list>
SHORT: FLUP? /qonly/ <list>

ID:	n / a	Mode:	CE-Harm
Type:	float	Suffix:	$1 \ldots 8$
Value:	n / a	List:	$0 \ldots . .31$ for half wave number
Unit:	0	Group:	n / a

Reads the phase angle of the voltage peak value of the half waves. After each measuring cycle over 16 periods you can get 32 values.

9.2.4.1.7.9.15 :STATe? HUST?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:STATe? /qonly/ |
:READ[:SCALar]:HARMonics[:VOLTage]:STATe? /qonly/
SHORT: HUST? /qonly/

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 2^{\text {b }}-1$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the actual result of the voltage check
Bit 0: Set if the total voltage evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.
Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.
Bit 2: Set if the voltage amplitude was not within the limit, cleared otherwise.
Bit 3: Set if the frequency was not within the limit, cleared otherwise.
Bit 4: Set if the crest factor was not within the limit, cleared otherwise.
Bit 5: Set, if the peak value is not within $90^{\circ} \pm 3^{\circ}$

9.2.4.1.7.9.16 :THDistort?

HUHD?
Uthd
SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:THDistort?/qonly/| :READ[:SCALar]:HARMonics[:VOLTage]:THDistort? /qonly/
SHORT: HUHD? /qonly/

ID:	Uthd	Mode:	CE-Harm, Flicker, HARM100
Type:	float	Suffix:	$1 \ldots 8 / 12$
Value:	in $\%$	List:	n/a
Unit:	n/a	Group:	n/a

Reads the THD of the voltage.

9.2.4.1.8 :POWer

:CALCulate			
:DISPlay			
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent	
:FORMat		:CYCLe	
:INITiate		:DINPut	
:INPut		:ENERgy	
:INSTrument		:FLICker	
:MEMory		:FREQuency	
:READ \rightarrow		:HARMonics	
:SENSe		:POWer \rightarrow	:AACTive
:SOURce		:RESistance	:AAPParent
:STATus		:SSYStem	[:ACTive]
:SYSTem		:VARiable	:APParent
:TRIGger		[:VOLTage]	:AREactive
			:FSCale
			:ICAPacity
			:PFACtor
			:PHASe
			:REACtive

9.2.4.1.8.1 :AACTive?
 PM?
 Pm

SCPI: :FETCh[:SCALar]:POWer:AACTive? /qonly/ | :READ[:SCALar]:POWer:AACTive? /qonly/ SHORT: PM? /qonly/

ID:	Pm	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	W	Group:	n/a

Reads the average active power of the energy measuring.

9.2.4.1.8.2 :AAPParent? SM?

```
SCPI: :FETCh[:SCALar]:POWer:AAPParent?/qonly/|
    :READ[:SCALar]:POWer:AAPParent?/qonly/
SHORT: SM? /qonly/
```

ID:	Sm	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	VA	Group:	n/a

Reads the average apparent power of the energy measuring.

9.2.4.1.8.3	[:ACTive]?	$\mathbf{P} ?$	\mathbf{P}

SCPI: :FETCh[:SCALar]:POWer[:ACTive]? /qonly/ | :READ[:SCALar]:POWer[:ACTive]? /qonly/ SHORT: P?/qonly/

ID: P Mode: All
Type: float Suffix: 1... 18
Value: n/a
List: n/a
Unit: W
Group: n/a
Reads the active power.

9.2.4.1.8.4 :APParent?
 S?

SCPI: :FETCh[:SCALar]:POWer:APParent? /qonly/ | :READ[:SCALar]:POWer:APParent? /qonly/ SHORT: S? /qonly/

ID:	S	Mode:	All
Type:	float	Suffix:	$1 \ldots .18$
Value:	n/a	List:	n/a
Unit:	VA	Group:	n/a

Reads the apparent power.

9.2.4.1.8.5 :AREactive? QM?

SCPI: :FETCh[:SCALar]:POWer:AREactive? /qonly/|
:READ[:SCALar]:POWer:AREactive? /qonly/
SHORT: QM? /qonly/

ID:	Qm	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	var	Group:	n/a

Reads the average reactive power of the energy measuring.

9.2.4.1.8.6 :FSCale? FSP?

SCPI: :FETCh[:SCALar]:POWer:FSCale? /qonly/ | :READ[:SCALar]:POWer:FSCale? /qonly/ SHORT: FSP? /qonly/

ID:	n / a	Mode:	All
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	n / a
Unit:	W	Group:	n / a

Reads the full scale value of the power.
9.2.4.1.8.7 :ICAPacity? InCA? Inca

SCPI: :FETCh[:SCALar]:POWer:ICAPacity? /qonly/ | :READ[:SCALar]:POWer:ICAPacity? /qonly/ SHORT: INCA?/qonly/

ID:	Inca	Mode:	Normal
Type:	long int	Suffix:	$1 \ldots 14$
Value:	$-1,0,+1$	List:	n/a
Unit:	n / a	Group:	n / a

Reads the status of the inca flag. It shows, if the system is inductive or capacitive:
+1 inductive
0 undefined
-1 capacitive

9.2.4.1.8.8 :PFACtor?
 PF?
 PF

SCPI: :FETCh[:SCALar]:POWer:PFACtor? /qonly/ | :READ[:SCALar]:POWer:PFACtor? /qonly/ SHORT: PF?/qonly/

ID:	PF	Mode:	All
Type:	float	Suffix:	$1 \ldots . .18$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the power factor.

9.2.4.1.8.9 :PHASe?
 PHI?
 PHI

SCPI: :FETCh[:SCALar]:POWer:PHASe? /qonly/ | :READ[:SCALar]:POWer:PHASe? /qonly/
SHORT: PHI? /qonly/

ID:	PHI	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	\circ	Group:	n/a

Reads the phase angle in degree between current and voltage.

9.2.4.1.8.10 :REACtive?
 Q?

SCPI: :FETCh[:SCALar]:POWer:REACtive? /qonly/ | :READ[:SCALar]:POWer:REACtive? /qonly/ SHORT: Q? /qonly/

ID:	Q	Mode:	All
Type:	float	Suffix:	$1 \ldots 18$
Value:	n / a	List:	n / a
Unit:	var	Group:	n / a

Reads the reactive power.

9.2.4.1.9 :RESistance

$:$ CALCulate			
$:$ DISPlay			
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent	
:FORMat	:CYCLe		
:INITiate	:DINPut		
:INPut	:ENERgy		
:INSTrument	:FLICker		
:MEMory	:FREQuency		
:READ \rightarrow	:HARMonics		
:SENSe	:POWer		
:SOURce	:RESistance \rightarrow	$:$ ASResist	
:STATus	:SSYStem	$:$:IMPedance	
:SYSTem	:VARiable	$:$ RSIMpedance	
:TRIGger	[:VOLTage]		

9.2.4.1.9.1 :ASResist? RSER? Rser

SCPI: :FETCh[:SCALar]:RESistance:ASResist?/qonly/|
:READ[:SCALar]:RESistance:ASResist? /qonly/
SHORT: RSER? /qonly/

ID:	Rser	Mode:	Normal, CE-Harm, Flicker
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	Ω	Group:	n/a

Reads the active serial resistance.

9.2.4.1.9.2 :IMPedance?
 Z?
 Z

SCPI: :FETCh[:SCALar]:RESistance:IMPedance? /qonly/ |
:READ[:SCALar]:RESistance:IMPedance? /qonly/
SHORT: Z? /qonly/

ID:	Z	Mode:	Normal, CE-Harm, Flicker
Type:	float	Suffix: $1 \ldots .14$	
Value:	n / a	List:	n / a
Unit:	Ω	Group: n / a	

Reads the impedance (apparent resistance).

9.2.4.1.9.3 :RSIMpedance? XSER?
 Xser

SCPI: :FETCh[:SCALar]:RESistance:RSIMpedance? /qonly/ |
:READ[:SCALar]:RESistance:RSIMpedance? /qonly/
SHORT: XSER? /qonly/

ID:	Xser	Mode:	Normal, CE-Harm, Flicker
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n / a
Unit:	Ω	Group:	n / a

Reads the reactive serial impedance.

9.2.4.1.10 :SSYStem? RLS?

SCPI: :FETCh[:SCALar]:SSYStem? /qonly/ [<NRi>] | :READ[:SCALar]:SSYStem? /qonly/ [<NRi>]
SHORT: RLS? /qonly/
$\begin{array}{ll}\text { ID: } & n / a \\ \text { Type: } & \text { long int } \\ \text { Value: } & -1,0,+1\end{array}$
Unit: n/a

Mode: Normal
Suffix: n/a
List: n/a
Group: optional $[<N R i>], 0=A, 1=B, \ldots$

Reads the supply system:
0 undefined system
+1 right rotating system (phase order $1,2,3$)
$-1 \quad$ left rotating system (phase order $3,2,1$)

9.2.4.1.11 :STATe? TSTA?

SCPI: :FETCh[:SCALar]:TRANsient:STATe? /qonly/\|:READ[:SCALar]: TRANsient:STATe?
/qonly/
SHORT: TSTA? /qonly/

ID:	n / a	Mode:	Normal
Type:	long int	Suffix:	n / a
Value:	$0 . .2$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the state of the transient search:
0 off
1 Search
2 found, fetching posttrigger
3 Finish

9.2.4.1.12 :VARiable? VAR?

SCPI: :FETCh[:SCALar]:VARiable? /qonly/ <list> | :READ[:SCALar]:VARiable? /qonly/ <list> SHORT: VAR? /qonly/ <list>

ID:	The name a user has defined. With script 'abc=Utrms*2;' then ID would be 'abc'	Mode:	All
Type:	float	Suffix:	n / a
Value:	n / a	List:	$0 \ldots 11$ for array element
Unit:	n / a	Group:	n / a

Reads value of the user defined variables. They are stored as an array.

9.2.4.1.13 :VNAMe? NVAR?

SCPI: :FETCh[:SCALar]:VNAMe? /qonly/ <string program data> | :READ[:SCALar]:VNAMe? /qonly/ <string program data>
SHORT: NVAR? /qonly/ <string program data>

ID:		Mode:	All
Type:	float	Suffix:	n / a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the value of the user defined variable whose name was sent as <string program data>. Example: You have a variable 'abc'. This can be read by NVAR? „abc".

9.2.4.1.14 [:VOLTage]

:CALCulate			
:DISPlay			
:FETCh \rightarrow	[:SCALar] \rightarrow	:CURRent	
:FORMat		:CYCLe	
: INITiate		:DINPut	
:INPut		:ENERgy	
:INSTrument		:FLICker	
:MEMory		:FREQuency	
:READ \rightarrow		:HARMonics	
:SENSe		:POWer	
:SOURce		:RESistance	
:STATus		:SSYStem	
:SYSTem		:VARiable	
:TRIGger		[:VOLTage] \rightarrow	:AC
			:AINPut
			:CFACtor
			:DC
			:FFACtor
			:INRush
			:MAXPk
			:MINPk
			:PPEak
			:RECTify
			:RUSed
			[:TRMS]

9.2.4.1.14.1 :AC? UAC?

SCPI: :FETCh[:SCALar][:VOLTage]:AC? /qonly/ | :READ[:SCALar][:VOLTage]:AC? /qonly/ SHORT: UAC? /qonly/

ID:	Uac	Mode:	Normal, CE-Harm
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	V	Group:	n/a

Reads the AC value of the voltage.
9.2.4.1.14.2 :AINPut? AIVA? Ain

SCPI: :FETCh[:SCALar][:VOLTage]:AINPut? /qonly/| :READ[:SCALar][:VOLTage]:AINPut? /qonly/ SHORT: AIVA? /qonly/

ID: Ain
Type: float
Value: n/a

Mode: All
Suffix: 1... 8
List: n/a

```
Unit: V
Group: n/a
```

Reads the voltage of the analogue input of the processing signal interface.

9.2.4.1.14.3 :CFACtor? UCF? Ucf

SCPI: :FETCh[:SCALar][:VOLTage]:CFACtor?/qonly/ |
:READ[:SCALar][:VOLTage]:CFACtor?/qonly/
SHORT: UCF? /qonly/

ID:	Ucf	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the crest factor of the voltage.
9.2.4.1.14.4 :DC? UDC? Udc

SCPI: :FETCh[:SCALar][:VOLTage]:DC? /qonly/ | :READ[:SCALar][:VOLTage]:DC? /qonly/ SHORT: UDC? /qonly/

ID:	Udc	Mode:	Normal, CE-Harm
Type:	float	Suffix:	$1 \ldots 14$
Value:	n / a	List:	n / a
Unit:	V	Group:	n / a

Reads the $\underline{\mathrm{DC}}$ value of the voltage.
9.2.4.1.14.5 :FFACtor? UFF? Uff

SCPI: :FETCh[:SCALar][:VOLTage]:FFACtor? /qonly/ |
:READ[:SCALar][:VOLTage]:FFACtor? /qonly/
SHORT: UFF? /qonly/

ID:	Uff	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads the form factor of the voltage.

9.2.4.1.14.6 :FSCale?
 FSU?

SCPI: :FETCh[:SCALar][:VOLTage]:FSCale? /qonly/ |
:READ[:SCALar][:VOLTage]:FSCale? /qonly/
SHORT: FSU? /qonly/

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: float
Value: n/a
Unit: V

Mode:	All
Suffix:	$1 \ldots 14$
List:	n/a
Group:	n/a

Mode: All
Suffix: 1... 14
Group: n/a

Reads the full scale value of the voltage.
9.2.4.1.14.7 :MAXPk? UMAX? Upkp

SCPI: :FETCh[:SCALar][:VOLTage]:MAXPk?/qonly/ | :READ[:SCALar][:VOLTage]:MAXPk? /qonly/
SHORT: UMAX?/qonly/

ID:	Upkp	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	V	Group:	n/a

Reads the biggest sample value of the voltage.
9.2.4.1.14.8 :MINPk? UMIN? Upkn

SCPI: :FETCh[:SCALar][:VOLTage]:MINPk? /qonly/ | :READ[:SCALar][:VOLTage]:MINPk? /qonly/ SHORT: UMIN? /qonly/

ID:	Upkn	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	V	Group:	n/a

Reads the smallest sample value of the voltage.

9.2.4.1.14.9 :PHASe? UPHI? Uphi

SCPI: :FETCh[:SCALar][:VOLTage]:PHASe? /qonly/| :READ[:SCALar][:VOLTage]:MINPk? /qonly/ SHORT: UPHI? /qonly/

ID:	n / a	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n / a
Unit:	\circ	Group:	n / a

Reads the phase angle of the voltage like displayed in the Fresnel diagram.
9.2.4.1.14.10 :PPEak? UPP? Upp

SCPI: :FETCh[:SCALar][:VOLTage]:PPEak? /qonly/| :READ[:SCALar][:VOLTage]:PPEak? /qonly/ SHORT: UPP? /qonly/

ID:	Upp	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	V	Group:	n / a

Reads the peak peak value of the voltage.

9.2.4.1.14.11 :RECTify? UREC? Urect

SCPI: :FETCh[:SCALar][:VOLTage]:RECTify?/qonly/ |
:READ[:SCALar][:VOLTage]:RECTify? /qonly/
SHORT: UREC? /qonly/

ID:	Urect	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	n/a
Unit:	V	Group:	n/a

Reads the rectified value of the voltage.

9.2.4.1.14.12 :RUSed? OVRU? OvrU

SCPI: :FETCh[:SCALar][:VOLTage]:RUSed? /qonly/ | :READ[:SCALar][:VOLTage]:RUSed? /qonly/
SHORT: OVRU?/qonly/

ID:	OvrU	Mode:	All
Type:	float	Suffix:	$1 \ldots 14$
Value:	in $\%$	List:	n/a
Unit:	n / a	Group:	n / a

Reads the usage of the range in percent.

9.2.4.1.14.13 [:TRMS?] UTRMS? Utrms

SCPI: :FETCh[:SCALar][:VOLTage][:TRMS]? /qonly/ |
:READ[:SCALar][:VOLTage][:TRMS]? /qonly/
SHORT: UTRMS? /qonly/

ID:	Utrms
Type:	float
Value:	n/a
Unit:	V

Mode:	All
Suffix:	$1 \ldots 18$
List:	n/a
Group:	n/a

Reads the TRMS value of the voltage.

9.2.5 :FORMat commands

Here you can setup the output format.

```
:CALCulate
:DISPlay
:FETCh
:FORMat }->\mathrm{ :DATA
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
```

```
:SYSTem
:TRIGger
```


9.2.5.1 :DATA FRMT

SCPI: :FORMat:DATA/nquery/ <NRi>
SHORT: FRMT/nquery/ <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

Defines the data output format. Parameter is:
' 0 ' or 'ASCII' for ASCII output [*RST default value]
' 1 ' or 'PACKED' for a packed output.
In the packed output format the data are transmitted as 'defined length arbitrary block response data'. If the available buffer memory size is too small for the amount of data the LMG wants to send, the data flow will be split in several sequential blocks of data. There are three kinds of data in the blocks: ASCII data, long data (4 Byte) and float data (4 Byte). The numeric data are transferred, so that the receiving PC program can store the data directly in memory. The number 0×11223344 is arranged inside the block as $0 \times 440 \times 330 \times 220 \times 11$. This is the order Intel based computers store the number. So if you want to read the number you can simply use a pointer to the input buffer and read the contents of the pointer.

The output changes after the end of the actual program message.

9.2.6 :INITiate commands

Here you can start or stop special actions.

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate -> :CONTinuous
:INPut :COPY
:INSTrument :IMMediate
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.6.1 :CONTinuous CONT

SCPI: :INITiate:CONTinuous <NRi>
SHORT: CONT <NRi>
ID: $\quad \mathrm{n} / \mathrm{a}$
Mode: All

Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

This activates or deactivates the continuous execution of the string defined with
:TRIGger:ACTion or ACTN. The programmer should only use :FETCh commands, because when CONT is switched to 'ON', automatically an :INITiate:IMMediate is executed at the end of each cycle.

Parameter:
'ON' or ' 1 ' activates this mode
'OFF' or '0' deactivates this mode [*RST default value]

The standard defines, that instruments with sequential commands can only exit the 'ON' state by the device clear command of the interface. This works also with this instrument. But additionally you can exit the 'ON' state by setting it to 'OFF' with :INITiate:CONTinuouse or CONT.

9.2.6.2 :COPY COPY

SCPI: :INITiate:COPY/nquery/
SHORT: COPY/nquery/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

This forces an actualisation of the values to be read with the :FETCh commands. The copying of the data is done immediately and not at the end of the measuring cycle (see also 9.2.6.3, ':IMMediate INIM').

9.2.6.3 :IMMediate
 INIM

SCPI: :INITiate:IMMediate/nquery/
SHORT: INIM/nquery/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

This forces an actualisation of the values to be read with the :FETCh commands. In general the instrument measures continuous. After each cycle the measured values are copied into the display memory. The values read by the :FETCh commands are taken from another copy of the values. This copy is updated, whenever the :INITiate:IMMediate or INIM command is executed. By this it is sure, that all values read with sequential :FETCh commands are from one measuring cycle and belong together.

Please note, that the execution of this command lasts until the end of the cycle. This can take up to one complete cycle. Please keep this in mind when setting any time-out for expecting the answer of a following command.

Please take care to follow this rules:

1. Use just one INIM in one command string to the instrument.
2. Send a second INIM just when the request of the first INIM is answered.

9.2.7 :INPut commands

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut }->\quad\mathrm{ :COUPling
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.7.1 :COUPling SCPL

SCPI: :INPut:COUPling <NRi>[,<NRi>]
SHORT: SCPL $<$ NRi $>[,<\mathrm{NRi}>]$

ID:	n / a	Mode:	Normal, HARM100
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi $>] ; 0=\mathrm{A}, 1=\mathrm{B}$

Sets or queries the setting of the signal coupling. Allowed values are:
' 0 ' or 'ACDC' for $\mathrm{AC}+\mathrm{DC}$ coupling [*RST default value]
' 1 ' for AC coupling

9.2.8 :INSTrument commands

Here general set-ups of the instrument are done.

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument }->\mathrm{ :SELect
:MEMory
:READ
```

```
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.8.1 :SELect MODE

SCPI: :INSTrument:SELect <NRi>
SHORT: MODE <NRi>

ID:	n/a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .3$	List:	n / a
Unit:	n / a	Group:	n / a

Sets or reads the measuring mode:
' 0 ' or 'NORML' for normal measuring mode [*RST default value]
' 1 ' or 'CEHRM' for CE harmonic measuring mode
' 2 ' or 'CEFLK' for CE flicker measuring mode
' 3 ' or 'HRMHUN' for 100 harmonics measuring mode

Hint

The execution of this command can take up to few seconds. The LMG works internally with a watchdog protection. To prevent that the watchdog becomes active, the 'MODE' command should be send as the only command in a message. Just the '*OPC?' can be added to get a feedback, if the command has finished ('MODE x;*OPC?').

9.2.9 :MEMory commands

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory }->\quad\mathrm{ :FREeze
:READ :SSIZe
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```


9.2.9.1 :FREeze

SCPI: :MEMory:FREeze <NRi>
SHORT: FRZ <NRi>

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: long int
Value: 0,1

Mode: All
Suffix: n/a
List: n/a

Unit: n/a Group: n/a
Freezes the scope RAM. The scope has too much memory so it can't be copied each cycle into a separate buffer. For this reason you should set FRZ to ON when you want to readout the sample values of the scope. Parameter:
'ON' or ' 1 ' activates the freeze mode
'OFF' or ' 0 ' deactivates the freeze mode [*RST default value]

9.2.9.2 :SSIZe GMEM

SCPI: :MEMory:SSIZe? /qonly/
SHORT: GMEM? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0,2^{16}, 2^{22}, 2^{23}$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the size of the sample value memory in number of sample values.

9.2.10 :SENSe commands

9.2.10.1 :AINPut

:CALCulate		
:DISPlay		
:FETCh		
:FORMat		
:INITiate		
: INPut		
:INSTrument		
:MEMory		
:READ		
:SENSe \rightarrow	:AINPut \rightarrow	:FSCale
:SOURce	:ARON	:ZERO
:STATus	:AVERage	
:SYSTem	:CURRent	
:TRIGger	:FILTer	
	:FINPut	
	:FLICker	
	:HARMonics	
	:INTegral	
	:SWEep	
	:TRANsient	
	:VOLTage	
	:WAVeform	
	:WIRing	
	:ZPReject	

9.2.10.1.1 :DIFFerential AIDI

SCPI: :SENSe:AINPut:DIFFerential <NRi>
SHORT: AIDI <NRi>
ID: $\quad \mathrm{n} / \mathrm{a}$
Mode: All

Type:	long int	Suffix:	n / a
Value:	$0,1\left[{ }^{*} R S T\right.$ default value] $=1$	List:	n / a
Unit:	n / a	Group:	n / a

Sets or queries if the analogue inputs work as 8 single ended or as 4 differential inputs.
0: Differential inputs
1: \quad Single ended inputs, [*RST default value]

9.2.10.1.2 :FSCale AIHI

SCPI: :SENSe:AINPut:FSCale <NRf>
SHORT: AlHI <NRf>

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, [*RST default value] $=10$	List:	n / a
Unit:	n / a	Group:	n / a

Sets or queries the setting of the full scale of the analogue inputs.

9.2.10.1.3 :ZERO AILO

SCPI: :SENSe:AINPut:ZERO <NRf>
SHORT: AILO <NRf>

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, $\left[{ }^{*}\right.$ RST default value $]=0$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or queries the setting of the zero position of the analogue inputs.

9.2.10.2 :ARON ARON

SCPI: :SENSe:ARON <NRi>[,<NRi>]
SHORT: ARON <NRi>[,<NRi>]

ID:	n / a	Mode:	Normal
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

Sets or queries if the aron circuit should be used. Following values are allowed:
0 : No aron circuit is used
1: \quad Aron circuit is used, [*RST default value]
The optional [,<NRi>] specifies, if the master instrument (=0, default) or slave instrument (=1) should be setup. In a big, combined instrument, the channels 1-4 are master instrument channels, the channels 5-8 are slave instrument channels. This is, because such instruments are internally build up as a master-slave system.

9.2.10.3 :AVERage

:CALCulate		
:DISPlay		
:FETCh		
:FORMat		
:INITiate		
:INPut		
:INSTrument		
:MEMory		
:READ		
:SENSe \rightarrow	:AINPut	
:SOURce	:ARON	
:STATus	:AVERage \rightarrow	:COUNt
:SYSTem	:CURRent	
:TRIGger	:FILTer	
	:FINPut	
	:FLICker	
	:HARMonics	
	:INTegral	
	:SWEep	
	:TRANsient	
	:VOLTage	
	:WAVeform	
	:WIRing	
	:ZPReject	

9.2.10.3.1 :COUNt AVER
 Aver

SCPI: :SENSe:AVERage:COUNt <NRf>
SHORT: AVER <NRf>

ID:	Aver	Mode:	Normal
Type:	float	Suffix:	n/a
Value:	$1 \ldots 999,\left[{ }^{*}\right.$ RST default value] $=1$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or queries the setting of the average parameter.

9.2.10.4 :CURRent

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe -> :AINPut
:SOURce :ARON
:STATus :AVERage
SYSTem :CURRent
:TRIGger
```

:FILTer :FINPut FLICker :HARMonics :INTegral :SWEep

```
:TRANsient
:VOLTage
:WAVeform
:WIRing
:ZPReject
```


9.2.10.4.1 :DELay IDLY

SCPI: :SENSe:CURRent:DELay <NRi>
SHORT: IDLY <NRi>

ID:	n/a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$-2666 \ldots+2666,\left[{ }^{*}\right.$ RST default value $=0$	List:	n/a
Unit:	ns	Group:	n/a

Reads and sets the delay of the current input in ns. Positive values symbolize a delay, negative values a negative delay!
Example: You have a current sensor with a group delay of +100 ns . If you want to correct this group delay, you have to set the current delay to -100 ns .

9.2.10.4.2 :DETector IEXT

SCPI: :SENSe:CURRent:DETector <NRi>
SHORT: IEXT <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots .2$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets internal or external shunt input:
' 0 ' or 'INT' for internal shunt at I* jack (current input) [*RST default value]
' 1 ' or 'EXT' for external shunt input (voltage input, sensor input)
' 2 ' for for internal shunt at I_{HF} jack (current input)

9.2.10.4.3 :IDENtify?
 IDNI?

SCPI: :SENSe:CURRent:IDENtify? /qonly/
SHORT: IDNI? /qonly/

ID:	n / a	Mode:	All
Type:	string	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the type of the external current sensor.

9.2.10.4.4 :RANGe

```
:CALCulate
:DISPlay
```

```
:FETCh
:FORMat
:INITiate
INPut
:INSTrument
MEMory
:READ
:SENSe -> :AINPut
SOURce :ARON
:STATus :AVERage
:SYSTem :CURRent
TRIGger :FILTer
:RANGe -> :AUTO
:FINPut :SCALe :LINTern
:FLICker [:UPPer]
:HARMonics
:INTegral
:SWEep
:TRANsient
:VOLTage
:WAVeform
:WIRing
:ZPReject
```


9.2.10.4.4.1 :AUTO IAM

SCPI: :SENSe:CURRent:RANGe:AUTO <NRi>
SHORT: IAM <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	0,1	List:	n/a
Unit:	n / a	Group:	n / a

Reads and sets the status of the autorange function:
' 0 ' or 'MANUAL' for manual range selection
' 1 ' or 'AUTO' for automatic range selection [*RST default value]

9.2.10.4.4.2 :LINTern? IILS?

SCPI: :SENSe:CURRent:RANGe:LINTern?/qonly/
SHORT: IILS/qonly/

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads a list with the available ranges. You get several numbers which are separated by colons ','. The first number defines the number of following numbers. If you have selected external sensors, you get the list of their ranges.

9.2.10.4.4.3 [:UPPer]

IRNG
SCPI: :SENSe:CURRent:RANGe[:UPPer] <NRf> SHORT: IRNG <NRf>

ID:	Rngl	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	A	Group:	n/a

Reads and sets the range for the current measurement. The parameter is the nominal value of the range.

9.2.10.4.5 :SCALe ISCA Iscal

SCPI: :SENSe:CURRent:SCALe <NRf>
SHORT: ISCA <NRf>

ID:	Iscal	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, $\left[{ }^{*}\right.$ RST default value] $=1.0$	List:	n/a
Unit:	n/a	Group:	n/a

Reads and sets the scaling of the current range.

9.2.10.5 :FILTer

9.2.10.5.1 :AFILter
 FAAF

SCPI: :SENSe:FILTer:AFILter <NRi>[,<NRi>]
SHORT: FAAF <NRi>[,<NRi>]

ID:	n / a	Mode:	HARM100
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi>]; $0=\mathrm{A}, 1=\mathrm{B}, \ldots$

Reads and sets the anti-aliasing-filter settings:
0: Anti aliasing filter manual setable (via FILT)
1: Anti aliasing filter selection automaticaly [*RST default value]

9.2.10.5.2 [:LPASs]

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe }->\mathrm{ :AINPut
:SOURce :ARON
:STATus :AVERage
:SYSTem :CURRent
:TRIGger :FILTer }->\quad[:LPASs] -> [:STATe]
```

```
:FLICker
:HARMonics
:INTegral
:SWEep
:TRANsient
:VOLTage
:WAVeform
:WIRing
:ZPReject
```


9.2.10.5.2.1 [:STATe]

FILT

SCPI: :SENSe:FILTer[:LPASS][:STATe] <NRi>[,<NRi>]
SHORT: FILT <NRi>[,<NRi>]

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: long int
Value: n/a
Unit: n / a
Reads and sets the filter settings:
0: Filter off [${ }^{*}$ RST default value]
1: Low pass 270 kHz
2: Low pass 150 kHz
3: Low pass 138 kHz
4: Low pass 90 kHz
5: Low pass 42 kHz
6: Low pass 30 kHz
7: Low pass 21 kHz
9: Low pass 11 kHz
10: Low pass 10 kHz
11: Low pass 9.2 kHz
12: Low pass 6 kHz
14: Low pass 2.8 kHz
16: Low pass 2 kHz
17: Low pass 1.4 kHz
20: Low pass 700 Hz
22: Low pass 350 Hz
23: Low pass 175 Hz
24: Low pass 87.5 Hz
25: Low pass 60 Hz
26: Low pass 30 Hz

Mode: Normal
Suffix: n/a
List: n/a
Group: optional [, <NRi>]; 0=A, 1=B, \ldots

```
:INPut
:INSTrument
MEMory
READ
SENSe -> :AINPut
:SOURce :ARON
STATus :AVERage
SYSTem :CURRent
:TRIGger :FILTer
:FINPut }->\quad\mathrm{ SCALe
:FLICker
:HARMonics
:INTegral
:SWEep
:TRANsient
:VOLTage
:WAVeform
:WIRing
:ZPReject
```


9.2.10.6.1 :SCALe
 DIFS

SCPI: :SENSe:FINPut:SCALe <NRf>
SHORT: DIFS <NRf>
ID: n/a Mode: All
Type: float
Value: n / a, [*RST default value] is 1.0
Unit: n/a

Suffix:	1,2
List:	n/a
Group:	n / a

Sets or queries the setting of the scale of the frequency input.

9.2.10.7 :FLICker

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe }->\mathrm{ :AINPut
:SOURce :ARON
:STATus :AVERage
:SYSTem :CURRent
:TRIGger :FILTer
:FINPut
:FLICker }->\quad\mathrm{ :PERiods
:HARMonics :STIMe
:INTegral
:SWEep
:TRANsient
:VOLTage
:WAVeform
:WIRing
:ZPReject
```


9.2.10.7.1 :PERiods

FLPS
FIkPer
SCPI: :SENSe:FLICker:PERiods <NRf> SHORT: FLPS <NRf>

ID: FlkPer
Type: float
Value: $n / a,\left[{ }^{*} R S T\right.$ default value] $=12$
Unit: n / a

Mode: Flicker
Suffix: n/a
List: n/a
Group: n/a

Reads and sets the number of periods for flicker measuring.

9.2.10.7.2 :STIMe FTIM

SCPI: :SENSe:FLICker:STIMe <NRi>
SHORT: FTIM <NRi>
ID: $\mathrm{n} / \mathrm{a} \quad$ Mode: Flicker

Type: long int
Value: $n / \mathrm{a},\left[{ }^{*}\right.$ RST default value $]=600$
Unit: s
Mode: Flicker
Suffix: n/a
List: n/a
Group: n/a
Reads and sets the short term flicker measuring time.

9.2.10.8 :HARMonics

:CALCulate		
:DISPlay		
:FETCh		
:FORMat		
:INITiate		
:INPut		
:INSTrument		
:MEMory		
:READ		
:SENSe \rightarrow	:AINPut	
:SOURce	:ARON	
:STATus	:AVERage	
:SYSTem	:CURRent	
:TRIGger	:FILTer	
	:FINPut	
	:FLICker	
	$:$ HARMonics \rightarrow -INTegral	:FDIV
	:SWEep	:SMOoth
	:TRANsient	:TIME
	:VOLTage	
	:WAVeform	
	:WIRing	
	:ZPReject	

9.2.10.8.1 :FDIV
 FDIV

SCPI: :SENSe:HARMonics:FDIV <NRf $>[,<$ NRi $>]$
SHORT: FDIV <NRf>[,<NRi>]

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: float

Mode: HARM100
Suffix: n/a
Value: $\quad 1 \ldots 50,[* R S T$ default value] = 1
Unit: n/a

List: n/a
Group: optional [, $<\mathrm{NRi}>$]; $0=\mathrm{A}, 1=\mathrm{B}, \ldots$

Reads and sets the frequency divider ratio.

9.2.10.8.2 :ISTart HNRZ

SCPI: :SENSe:HARMonics:ISTart <NRi>[,<NRi>]
SHORT: HNRZ <NRi>[,<NRi>]

ID:	n / a	Mode:	CE-Harm
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 1000$	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi>]; $0=A, 1=\mathrm{B}, \ldots$

Reads and sets the number of the interharmonic where the analysis range of the interharmonics starts.

9.2.10.8.3 :REFerence HREF

SCPI: :SENSe:HARMonics:REFerence $<$ NRi>[,<NRi>]
SHORT: HREF <NRi>[,<NRi>]

ID:	n / a	Mode:	HARM100
Type:	long int	Suffix:	n / a
Value:	$0,1,20$	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi>]; $0=A, 1=\mathrm{B}, \ldots$

Reads and sets the state of the phase reference for the harmonics and the Fresnel diagram. That defines if the basic wave of U , I or the synchronisation source is set to 0° as reference for the system:
' 0 ' for U as reference [*RST default value]
' 1 ' for I as reference
'20' for none (=synchronisation source) as reference

9.2.10.8.4 :SMOoth SMOO

SCPI: :SENSe:HARMonics:SMOoth <NRi>
SHORT: SMOO <NRi>

ID:	n/a	Mode:	CE-Harm
Type:	long int	Suffix:	n/a
Value:	0,1	List:	n/a
Unit:	n/a	Group:	n/a

Reads and sets the state of the smoothing:
' 0 ' or 'OFF' for direct measuring [*RST default value]
' 1 ' or 'ON' for smoothed measuring

9.2.10.8.5 :TIME HTIM

SCPI: :SENSe:HARMonics:TIME <NRi> SHORT: HTIM <NRi>

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: long int
Value: $\quad \mathrm{n} / \mathrm{a}$, [*RST default value] $=150$ Unit: s

Mode: CE-Harm
Suffix: n/a
List: n/a
Group: n/a

Reads and sets the harmonics measuring time.

9.2.10.9 :INTegral

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe }->\quad:AINPu
:SOURce :ARON
:STATus :AVERage
:SYSTem :CURRent
:TRIGger :FILTer
:FINPut
:FLICker
:HARMonics
:INTegral }->\mathrm{ :DATE
:SWEep :INTerval
:TRANsient :MODE
:VOLTage :STATe
:WAVeform :TIME
:WIRing
:ZPReject
```


9.2.10.9.1 :DATE INTD

SCPI: :SENSe:INTegral:DATE <NRf>,<NRf>,<NRf>
SHORT: INTD <NRf>,<NRf>,<NRf>

ID:	n/a	Mode:	Normal
Type:	n/a	Suffix:	n/a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Reads and sets the start date for an energy measurement. Example: INTD 2003,02,09 sets the date to the $9^{\text {th }}$ February, 2003.

9.2.10.9.2 :INTerval
 INTI

SCPI: :SENSe:INTegral:INTerval <NRi> SHORT: INTI <NRi>

ID:	n / a	Mode:	Normal
Type:	long int	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	s	Group:	n / a

Reads and sets the time interval for an energy measurement.

9.2.10.9.3 :MODE
 INTM

SCPI: :SENSe:INTegral:MODE <NRi>
SHORT: INTM <NRi>

ID:	n / a	Mode:	Normal
Type:	long int	Suffix:	n / a
Value:	$0 \ldots .4$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the integration mode:
$0=$ off [$*$ RST default value]
1=continuous
2=interval
3=periodic
4=summing

9.2.10.9.4 :STATe? INTS?

SCPI: :SENSe:INTegral:STATe? /qonly/
SHORT: INTS? /qonly/

ID:	n/a	Mode:	Normal
Type:	long int	Suffix:	n/a
Value:	$0 \ldots .5$	List:	n/a
Unit:	n/a	Group:	n/a

Reads the state of the energy measurement:
$0=$ Reset
1=Wait
$2=$ Start
3=Run
4=Stop
5=Hold

9.2.10.9.5 :TIME INTT

SCPI: :SENSe:INTegral:TIME <NRf>,<NRf>,<NRf>
SHORT: INTT <NRf>,<NRf>,<NRf>

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: n/a
Value: n/a

Mode: Normal
Suffix: n/a
List: n/a

```
Unit: n/a Group: n/a
```

Reads and sets the start time for an energy measurement. Example: INTT 19,26,49 sets the time to 19:26:49.

9.2.10.10 :RPValues RPHV

SCPI: :SENSe:RPValues <NRi>
SHORT: RPHV <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

By this you can deactivate the rejection of phantom values:
0: Phantom values are displayed
1: Phantom values are not displayed [*RST default value]

9.2.10.11 :SWEep

:CALCulate		
:DISPlay		
:FETCh		
:FORMat		
:INITiate		
: INPut		
: INSTrument		
:MEMory		
:READ		
:SENSe \rightarrow	:AINPut	
:SOURce	:ARON	
:STATus	:AVERage	
:SYSTem	:CURRent	
:TRIGger	:FILTer	
	:FINPut	
	:FLICker	
	:HARMonics	
	:INTegral	
	:SWEep \rightarrow	:TIME
	:TRANsient	
	:VOLTage	
	:WAVeform	
	:WIRing	
	:ZPReject	

9.2.10.11.1 :TIME

SCPI: :SENSe:SWEep:TIME <NRf>
SHORT: CYCL <NRf>

ID:	Cycle	Mode:	Normal
Type:	float	Suffix:	n/a
Value:	$0,0.05 \ldots 60,\left[{ }^{*}\right.$ RST default value $]=0.5$	List:	n/a
Unit:	s	Group:	n/a

Reads and sets the cycle time.

9.2.10.12 :TRANsient

:CALCulate		
:DISPlay		
:FETCh		
:FORMat		
:INITiate		
:INPut		
:INSTrument		
:MEMory		
:READ		
:SENSe \rightarrow :AINPut		
:SOURce :ARON		
:STATus :AVERage		
:SYSTem	:CURRent	
:TRIGger	:FILTer	
	:FINPut	
	:FLICker	
	:HARMonics	
	:INTegral	
	:SWEep	
	:TRANsient \rightarrow	:ACRegister
	:VOLTage	:LIMita
	:WAVeform	:LIMitb
	:WIRing	:DURation
	:ZPReject	:OCRegister
		:RTIMe
		:SIGNal

9.2.10.12.1 :ACRegister TACR

SCPI: :SENSe:TRANsient:ACRegister <NRi>
SHORT: TACR <NRi>

ID:	n / a	Mode:	Normal
Type:	long int	Suffix:	$1 \ldots 8$
Value:	0,1	List:	n/a
Unit:	n / a	Group:	n/a

Reads and sets the AND Condition:
0: No AND condition for this Trigger-Event [*RST default value]
1: AND condition for this Trigger-Event

9.2.10.12.2 :ALIMit TLIA

SCPI: :SENSe:TRANsient:ALIMit <NRf> SHORT: TLIA <NRf>

ID:	n / a	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 8$
Value:	± 1 e9, ${ }^{*}$ RST default value] $=0$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the lower limit.

9.2.10.12.3 :BLIMit TLIB

SCPI: :SENSe:TRANsient:BLIMit <NRf>
SHORT: TLIB <NRf>

ID:	n / a	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 8$
Value:	$\pm 1 \mathrm{e} 9,\left[{ }^{*}\right.$ RST default value $]=0$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the upper limit.

9.2.10.12.4 :FUNCtion TFUN

SCPI: :SENSe:TRANsient:FUNCtion <NRi>
SHORT: TFUN <NRi>

ID:	n / a	Mode:	Normal
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots 3$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the function of the trigger events:
0 : < lower limit [*RST default value]
1: > upper limit
2: Window out (which is < lower limit or > upper limit)
3: Window in (which is > lower limit and < upper limit)

9.2.10.12.5 :DURation TDUR

SCPI: :SENSe:TRANsient:DURation <NRf>
SHORT: TDUR <NRf>

ID:	n/a	Mode:	Normal
Type:	float	Suffix:	$1 \ldots 8$
Value:	$1^{*} 10^{-6} \ldots 9.9,\left[{ }^{*}\right.$ RST default value $]=1 * 10^{-6}$	List:	n/a
Unit:	s	Group:	n/a

Reads and sets the duration of the event.

9.2.10.12.6 :OCRegister
 TOCR

SCPI: :SENSe:TRANsient:OCRegister <NRi>
SHORT: TOCR <NRi>

ID: $\quad \mathrm{n} / \mathrm{a}$
Type: \quad long int
Value: $\quad 0,1 ;[* R S T$ default value $]=0$
Unit: n/a

Mode: Normal
Suffix: 1... 8
List: n/a
Group: n/a

Reads and sets the OR Condition:
0: \quad No OR condition for this Trigger-Event [${ }^{*}$ RST default value]
1: OR condition for this Trigger-Event

9.2.10.12.7 :SIGNaI TSRC

SCPI: :SENSe:TRANsient:SIGNal <NRi>
SHORT: TSRC <NRi>

ID:	n/a	Mode:	Normal
Type:	long int	Suffix:	$1 \ldots 8$
Value:	see below	List:	n/a
Unit:	n/a	Group:	n/a

Reads and sets the trigger signal source:
Channels 1 to 4 Channels 5 to 8
u1: 100 u5: 104
u2: 101 u6: 105
u3: 102 u7: 106
u4: 103 u8: 107
u9: 110 u12: 113
u10: 111 u13: 114
u11: 112 u14: 115
i1: 200 i5: 204
i2: 201 i6: 205
i3: 202 i7: 206
i4: 203 i8: 207
i9: 210 i12: 213
i10: 211 i13: 214
i11: 212 i14: 215
p1: 300 p5: 304
p2: 301 p6: 305
p3: 302 p7: 306
p4: 303 p8: 307
p9: 310 p12: 313
p10: 311 p13: 314
p11: 312 p14: 315

9.2.10.13 :VOLTage

9.2.10.13.1 :DELay UDLY

SCPI: :SENSe:VOLTage:DELay <NRi>
SHORT: UDLY <NRi>

ID:	n/a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$-2666 \ldots+2666,\left[{ }^{*}\right.$ RST default value] $=0$	List:	n/a
Unit:	ns	Group:	n/a

Reads and sets the delay of the voltage input in ns. Positive values symbolize a delay, negative values a negative delay!
Example: You have a voltage sensor with a group delay of +150 ns . If you want to correct this group delay, you have to set the voltage delay to -150 ns .

9.2.10.13.2 :DETector UEXT

SCPI: :SENSe:VOLTage:DETector <NRi>
SHORT: UEXT <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the jack for the voltage input:
' 0 ' or 'INT' for voltage at U^{*} jack [*RST default value]
' 1 ' or 'EXT' for voltage at $\mathrm{U}_{\text {Sensor }}$ (sensor input)

9.2.10.13.3 :IDENtify

IDNU

SCPI: :SENSe:VOLTage:IDENtify? /qonly/ SHORT: IDNU?/qonly/

ID:	n / a	Mode:	All
Type:	string	Suffix:	$1 \ldots 8$
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the type of an external voltage sensor. The LMG will always return „No sensor input".

9.2.10.13.4 :RANGe

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
```

```
:MEMory
:READ
:SENSe }->\quad:AINPu
:SOURce :ARON
:STATus :AVERage
:SYSTem :CURRent
:TRIGger :FILTer
:FINPut
:FLICker
:HARMonics
:INTegral
:SWEep
:TRANsient
:VOLTage -> :RANGe }->\mathrm{ : 
```


9.2.10.13.4.1 :AUTO UAM

SCPI: :SENSe:VOLTage:RANGe:AUTO <NRi>
SHORT: UAM <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the status of the autorange function:
' 0 ' or 'MANUAL' for manual range selection.
' 1 ' or 'AUTO' for automatic range selection [*RST default value].

9.2.10.13.4.2 :LINTern? UILS?

SCPI: :SENSe:VOLTage:RANGe:LINTern?/qonly/
SHORT: UILS?/qonly/

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n / a
Unit:	V	Group:	n / a

Reads a list with the available ranges. You get several float numbers which are separated by colons ','. The first number defines the number of following numbers.

9.2.10.13.4.3 [:UPPer]

URNG
SCPI: :SENSe:VOLTage:RANGe[:UPPer] <NRf>
SHORT: URNG <NRf>

ID:	RngU	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a	List:	n/a
Unit:	V	Group:	n/a

Reads and sets the range for the voltage measurement. The parameter is the nominal value of the range.

9.2.10.13.5 :SCALe USCA Uscal

SCPI: :SENSe:VOLTage:SCALe <NRf> SHORT: USCA <NRf>

ID:	Uscal	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, ${ }^{*}$ RST default value $=1$	List:	n/a
Unit:	n / a	Group:	n / a

Reads and sets the scaling of the voltage range.

9.2.10.14 :WAVeform

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe }->\mathrm{ :AINPut
:SOURce :ARON
:STATus :AVERage
:SYSTem :CURRent
:TRIGger :FILTer
:FINPut
:FLICker
:HARMonics
:INTegral
:SWEep
:TRANsient
:VOLTage
:WAVeform -> :CYCLes
:WIRing :IUPDate
:ZPReject :SATRigger
    :SBTRigger
    :SCTRigger
    :SRATe
    :WAVE
```


9.2.10.14.1 :DIVision GBAS

SCPI: :SENSe:WAVeform:DIVision <NRf>
SHORT: GBAS <NRf>

ID:	n / a	Mode:	Normal
Type:	float	Suffix:	n / a
Value:	$10 \mathrm{e}-6 . .1$	List:	n / a
Unit:	s	Group:	n / a

Reads or sets the timebase of the scope display (1-2-5 division). By this the record rate will be changed (requestable via GFRQ command). The smalles possible timebase depends on the following circumstances:

- cycle time
- chosen filter
- number of channels.

See also 11.1.3, 'Hints for setting up the record rate of the scope'

9.2.10.14.2 :IUPDate SACT

SCPI: :SENSe:WAVeform:IUPDate/nquery/ [<NRi>]
SHORT: SACT/nquery/ [<NRi>]

ID:	n / a	Mode:	All
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	optional $[<N R i>], 0=A, 1=B, \ldots$

Requests to update the the information about the scope data. Before this command you should set ':MEMory:FREeze ON'. After this command you can use ':SENS:WAV:SATR', ‘:SENS:WAV:SBTR’ and ‘:SENS:WAV:SCTT’. This command itself doesn’t return any values!

9.2.10.14.3 :SATRigger? SATR?

SCPI: :SENSe:WAVeform:SATRigger?/qonly/ [<NRi>]
SHORT: SATR? /qonly/ [<NRi>]

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n/a	Group:	optional $[<$ NRi>], $0=A, 1=B, \ldots$

Reads how many sample values are available after the trigger event. See also
‘:SENS:WAV:IUPD' for further information.

9.2.10.14.4 :SBTRigger? SBTR?

SCPI: :SENSe:WAVeform:SBTRigger? /qonly/ [<NRi>]
SHORT: SBTR? /qonly/ [<NRi>]

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	optional $[<$ NRi $>], 0=\mathrm{A}, 1=\mathrm{B}, \ldots$

Reads how many sample values are available before the trigger event. See also
‘:SENS:WAV:IUPD' for further information.

9.2.10.14.5 :SCTRigger?
 SCTT?

SCPI: :SENSe:WAVeform:SCTRigger?/qonly/
SHORT: SCTT? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 2^{31}-1$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the number of the sample value at the trigger. See also ':SENS:WAV:IUPD' for further information. The sample values of the instrument are counted. At the end of each cycle this counter is stored and can be read by this command. The counter runs up to $2^{31}-1$ and starts then again at 0 . See also 9.2.4.1.2.2, ‘:SNUMber? SCTC?’

You always get the value of group A.

9.2.10.14.6 :SRATe? GFRQ?

SCPI: :SENSe:WAVeform:SRATe? [<NRi>]/qonly/
SHORT: GFRQ? [<NRi>]/qonly/

ID:	n / a	Mode:	All
Type:	float	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	optional $[<N R i>], 0=A, 1=B, \ldots$

Reads the record rate of the sampled values.

9.2.10.14.7 :WAVE?
 WAVE?

SCPI: :SENSe:WAVeform:WAVE?/qonly/ <NRi>,<list>
SHORT: WAVE?/qonly/ <NRi>,<list>

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 14$
Value:	n/a	List:	see below
Unit:	n/a	Group:	n/a

Before using this command you should freeze the memory with :MEMory:FREeze, to avoid data losses at long transfer duration. Reads out sample values specified with <NRi>:
4: i
5: u
6: p
The first allowed value in <list> is the value read by :SENSe:WAVeform:SBTRigger?, the last allowed value that read by :SENSe:WAVeform:SATRigger?

9.2.10.15 :WIRing WIRE

SCPI: :SENSe:WIRing <NRi>[,<NRi>]

SHORT: WIRE <NRi>[,<NRi>]

ID:	n/a	Mode:	Normal, HARM100
Type:	long int	Suffix:	n/a
Value:	$0 \ldots .5,8 \ldots 15$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or queries the wiring of the LMG. Following values are allowed (3 to 7 only with option L45-O6 star to delta conversion!):
0 : Wiring '4+0'
1: Wiring ' $3+1$ ' [$*$ RST default value with 4 installed channels]
2: Wiring ' $2+2$ '
3: Wiring ‘ $3+1, \mathrm{U}^{*} \mathrm{I}^{*}{ }_{-}>\mathrm{U} \Delta \mathrm{I} \Delta^{\prime}$ '
4: \quad Wiring ' $3+1, \mathrm{U} \Delta \mathrm{I}^{*}{ }^{-}>\mathrm{U} \Delta \mathrm{I} \Delta$ '
5: Wiring ‘ $3+1, \mathrm{U} \Delta \mathrm{I}^{*}$ - $>\mathrm{U}^{*} \mathrm{I}^{*}$ ‘
6, 7: not used
8: Wiring ' $1+0$ ' [$*$ RST default value with 1 installed channel]
9: Wiring ' $2+0$ '
10: Wiring ' $1+1$ ' [${ }^{*}$ RST default value with 2 installed channels]
11: Wiring ' $3+0$ ' [$*$ RST default value with 3 installed channels]
12: Wiring ' $3+0, \mathrm{U}^{*} \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta$ '
13: Wiring ‘ $3+0, \mathrm{U} \Delta \mathrm{I}^{*}->\mathrm{U} \Delta \mathrm{I} \Delta^{\prime}$
14: Wiring ‘ $3+0, \mathrm{U} \Delta \mathrm{I}^{*}{ }^{-}>\mathrm{U}^{*} \mathrm{I}^{*}$ ‘
15: \quad Wiring ' $2+1$ '

The optional $[,\langle\mathrm{NRi}>]$ specifies, if the master instrument $(=0$, default) or slave instrument $(=1)$ should be setup. If you request the wiring from the slave but there is no slave connected, the answer will be -1 .

In a big, combined instrument, the channels 1-4 are master instrument channels, the channels 58 are slave instrument channels. This is, because such instruments are internally build up as a master-slave system.

9.2.10.16 :ZPReject ZSUP

SCPI: :SENSe:ZPReject <NRi>
SHORT: ZSUP <NRi>

ID:	n/a	Mode:	Normal
Type:	long int	Suffix:	n/a
Value:	0,1	List:	n/a
Unit:	n/a	Group:	n/a

By this you can deactivate the zero point rejection. It is a long number with following meaning:
0: Zero point rejection is switched off
1: Zero point rejection is switched on [$*$ RST default value]

9.2.11 :SOURce commands

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce -> :DIGital
:STATus :VOLTage
:SYSTem
:TRIGger
```


9.2.11.1 :DIGital

```
:CALCulate
:DISPlay
FETCh
:FORMat
:INITiate
INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce -> :DIGital }->\quad\mathrm{ :CONDition
STATus :VOLTage :LIMit
SYSTem :VALue
:TRIGger
```


9.2.11.1.1 :CONDition
 DOCO

SCPI: :SOURce:DIGital:CONDition <NRi>
SHORT: DOCO <NRi>

ID:	n/a	Mode:	All
Type:	long int	Suffix:	$1 \ldots 8$
Value:	$0 \ldots . .3$	List:	n/a
Unit:	n/a	Group:	n/a

Sets or queries the condition of the digital outputs. Possible parameters are:
0 : off [*RST default value]
1: on
2: >=
3: <

9.2.11.1.2 :LIMit
 DOLI

SCPI: :SOURce:DIGital:LIMit <NRf>
SHORT: DOLI <NRf>

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, ${ }^{*}$ RST default value] $=0$	List:	n/a
		215	

Unit: n/a Group: n/a
Sets or queries the setting of the limits of the digital outputs.

9.2.11.1.3 :VALue DOIX

SCPI: :SOURce:DIGital:VALue <string> SHORT: DOIX <string>

ID:	n / a	Mode:	All
Type:	string	Suffix:	$1 \ldots 8$
Value:	$\mathrm{n} / \mathrm{a},\left[{ }^{\text {RRST }} \mathrm{RS}\right.$ default value] = 'Utrms'	List:	n / a
Unit:	n / a	Group:	n / a

Sets or queries the setting of the value of the digital outputs. As <string> you have to enter the same string as you would enter when using the instrument without interface. So you have to sent a valid ID!

9.2.11.2 :VOLTage

9.2.11.2.1 :SCALe

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce }->\mathrm{ :DIGital
:STATus :VOLTage }->\mathrm{ :SCALe }->\quad\mathrm{ :FSCale
:SYSTem
:TRIGger
```


9.2.11.2.1.1 :FSCale AOHI

SCPI: :SOURce:VOLTage:SCALe:FSCale <NRf>
SHORT: AOHI <NRf>

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, [*RST default value] $=10$	List:	n / a
Unit:	n/a	Group:	n / a

Sets or queries the setting of the full scale of the analogue outputs.

9.2.11.2.1.2 :ZERO
 AOLO

SCPI: :SOURce:VOLTage:SCALe:ZERO <NRf>
SHORT: AOLO <NRf>

ID:	n/a	Mode:	All
Type:	float	Suffix:	$1 \ldots 8$
Value:	n/a, $\left[{ }^{\star}\right.$ RST default value] $=0$	List:	n/a
Unit:	n / a	Group:	n/a

Sets or queries the setting of the zero position of the analogue outputs.

9.2.11.2.2 :VALue AOIX

SCPI: :SOURce:VOLTage:VALue <string>
SHORT: AOIX <string>

ID:	n / a	Mode:	All
Type:	string	Suffix:	$1 \ldots 8$
Value:	$\mathrm{n} / \mathrm{a},\left[{ }^{*}\right.$ RST default value $]=$ „Utrms"	List:	n / a
Unit:	n / a	Group:	n / a

Sets or queries the setting of the value of the analogue outputs. As <string> you have to enter the same string as you would enter when using the instrument without interface. So you have to send a valid ID!

9.2.12 :STATus commands

9.2.12.1 :OPERation

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
STATus }->\mathrm{ :OPERation }->\mathrm{ :CONDition
:SYSTem :PRESet :ENABle
:TRIGger :QUEStionable [:EVENt]
    :NTRansition
    :PTRansition
```


9.2.12.1.1 :CONDition?
 SOC?

SCPI: :STATus:OPERation:CONDition? /qonly/
SHORT: SOC? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the Operation Status Condition Register.

9.2.12.1.2 :ENABIe

SOEN

SCPI: :STATus:OPERation:ENABle <NRi>
SHORT: SOEN <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the Operation Status Enable Register.

9.2.12.1.3 [:EVENt]? SOE?

SCPI: :STATus:OPERation[:EVENt]? /qonly/
SHORT: SOE? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the Operation Status Event Register and clears it.

9.2.12.1.4 :NTRansition SONT

SCPI: :STATus:OPERation:NTRansition <NRi>
SHORT: SONT <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the Operation Status Negative Transition Register.

9.2.12.1.5 :PTRansition SOPT

SCPI: :STATus:OPERation:PTRansition <NRi>
SHORT: SOPT <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the Operation Status Positive Transition Register.

9.2.12.2 PRESet PRES

SCPI: :STATus:PRESet/nquery/
SHORT: PRES/nquery/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Presets the operation and the query registers. The p-transition registers are filled with 0x7FFF, the n-transition registers with $0 x 0000$ and the enable registers with 0×0000.

9.2.12.3 :QUEStionable

```
CALCulate
DISPlay
FETCh
FORMat
:INITiate
INPut
INSTrument
:MEMory
READ
SENSe
:SOURce
STATus -> :OPERation
SYSTem :PRESet
TRIGger :QUEStionable }->\mathrm{ :CONDition
    ENABle
    [:EVENt]
    :NTRansition
    PTRansition
```


9.2.12.3.1 :CONDition?

SQC?
SCPI: :STATus:QUEStionable:CONDition?/qonly/
SHORT: SQC? /qonly/

ID:	n/a	Mode:	All
Type:	long int	Suffix:	n/a
Value:	$0 \ldots 65535$	List:	n/a
Unit:	n/a	Group:	n/a

Reads the Questionable Status Condition Register.

9.2.12.3.2 :ENABIe SQEN

SCPI: :STATus:QUEStionable:ENABle <NRi>
SHORT: SQEN <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the Questionable Status Enable Register.

9.2.12.3.3 [:EVENt]?
 SQE?

SCPI: :STATus:QUEStionable[:EVENt]?/qonly/
SHORT: SQE? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the Questionable Status Event Register and clears it.

9.2.12.3.4 :NTRansition SQNT

SCPI: :STATus:QUEStionable:NTRansition <NRi>
SHORT: SQNT <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the Questionable Status Negative Transition Register.

9.2.12.3.5 :PTRansition SQPT

SCPI: :STATus:QUEStionable:PTRansition <NRi>
SHORT: SQPT <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 65535$	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the Questionable Status Positive Transition Register.

9.2.13 :SYSTem commands

9.2.13.1 :BEEPer

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem }->\mathrm{ :BEEPer }->\mathrm{ :IMMediate
:TRIGger :DATE
```

```
:ERRor
:HELP
:KEY
:LANGuage
:OPTions
:PHEADER
:TIME
:VERSion
```


9.2.13.1.1 :IMMediate

BEEP

SCPI: :SYSTem:BEEPer:IMMediate/nquery/
SHORT: BEEP/nquery/

ID:	n / a	Mode:	All
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Forces the internal beeper to produce a short sound.

9.2.13.2 :DATE
 DATE

SCPI: :SYSTem:DATE <NRf>,<NRf>,<NRf>
SHORT: DATE <NRf>,<NRf>,<NRf>

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Reads and sets the system date. Format is DATE yyyy,mm,dd. Example: DATE 2003,02,09 sets the date to the $9^{\text {th }}$ February, 2003.

9.2.13.3 :ERRor

Following errors can occur:

No.	Name	Possible reason; what to do
8	Overrun error at CONT ON	Too many values were requested in a too short time
7	Nested TRIGger:ACTion not allowed	
6	Action Buffer Overrun	Too many commands after the TRIGger:ACTion command
5	Command header error; (or maybe wrong path before)	Not existing or misspelled command or wrong SCPI path
4	Formatter output has overrun	Internal error, please contact ZES
2	Parser output has overrun	Internal error, please contact ZES
1	Parser deadlocked	Internal error, please contact ZES
0	No error	-

No.	Name	Possible reason; what to do
-101	Invalid character	A '(' or ')' is missing in a <list>
-103	Invalid separator	A wrong character instead of the expected separator (‘,, ‘,;', ‘', ‘<EOS>', ...)
-110	Command header error	Not existing or misspelled command
-113	Undefined header	There are no default commands to complete the header automatically. You have to enter the complete command
-120	Numeric data error	A number was expected but not send
-123	Exponent too large	Exponent is > 37
-124	Too many digits	Number has more than 9 digits
-131	Invalid suffix	Suffix too big or small
-150	String data error	$\mathrm{A}^{\prime \prime \prime}$ ' is missing
-221	Settings conflict	Setting at the moment impossible. For example to change a measuring range while autorange is active
-222	Data out of range	Happens for example at invalid <list> entries
-224	Illegal parameter value	Happens for example if you want to change to the (not existing) measuring mode 27
other	Illegal error, please inform your supplier	An error in the internal error handling. Please contact ZES

9.2.13.3.1 :ALL?
 ERRALL?

SCPI: :SYSTem:ERRor:ALL?/qonly/
SHORT: ERRALL?/qonly/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Reads all errors, including error code and error description, separated by colons out of the error/event queue.

9.2.13.3.2 :COUNt? ERRCNT?

SCPI: :SYSTem:ERRor:COUNt? /qonly/
SHORT: ERRCNT? /qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads the number of errors in the error/event queue.

9.2.13.3.3 [:NEXT]? ERR?

SCPI: :SYSTem:ERRor[:NEXT]? /qonly/
SHORT: ERR? /qonly/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Reads the oldest entry from the error/event queue, including error code and error description, separated by colons (',').

9.2.13.4 :HELP

```
\begin{tabular}{ll} 
:CALCulate & \\
:DISPlay & \\
:FETCh & \\
:FORMat & \\
:INITiate & \\
:INPut & \\
:INSTrument & \\
:MEMory & \\
:READ & \\
:SENSe & :BEEPer \\
:SOURce & \(:\) DATE \\
:STATus & :ERRor \\
\(:\) SYSTem & :HELP \(\rightarrow\) \\
:TRIGger & \(:\) KEY \\
& \(:\) :HANGuage
\end{tabular}
```


9.2.13.4.1 :HEADers? HEAD?

SCPI: :SYSTem:HELP:HEADers? /qonly/
SHORT: HEAD? /qonly/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n / a	Group:	n / a

Returns a list of all SCPI headers. This list is a <defined length arbitrary block response data>. Because this command has a very special output format it should only be used stand alone.

9.2.13.4.2 :SHEaders? SHEAD?

SCPI: :SYSTem:HELP:SHEaders? /qonly/ [<NRi>]
SHORT: SHEAD? /qonly/ [<NRi>]

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Returns a list of all SHORT headers. This list is a <defined length arbitrary block response data>. Because this command has a very special output format it should only be used stand alone.

If the optional NRi is ' 0 ', then the output is according to SCPI standard. If it is ' 1 ' there are additional information in the format ' $x ; y t$ ':
x, if specified, is the maximum suffix
;y, if specified, is the maximum index
t, if specified, is the data type

9.2.13.5 :KEY KEY

SCPI: :SYSTem:KEY <NRi>
SHORT: KEY <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Queries the last pressed key or simulates the pressing of a key. Valid key numbers are:

Figure 39: Keynumbers

Please note, that the rotary knob can just be set but not queried!

9.2.13.6 :LANGuage LANG

SCPI: :SYSTem:LANGuage/nquery/ <NRi>
SHORT: LANG/nquery/ <NRi>

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	0,1	List:	n / a
Unit:	n / a	Group:	n / a

Changes the command set to be used. Parameter can be:
' 0 ' or 'SCPI' to go to the SCPI command set
' 1 ' or 'SHORT' to go to the SHORT command set
The new language will be used beginning with the following command header.
There is no *RST default value! The language at power up will be SCPI. A 'device clear' or 'BREAK' will also select SCPI.

9.2.13.7 :OPTions? OPTN?

SCPI: :SYSTem:OPTions? /qonly/
SHORT: OPTN/qonly/

ID:	n / a	Mode:	All
Type:	long int	Suffix:	n / a
Value:	$0 \ldots 2^{23}-1$	List:	n / a
Unit:	n / a	Group:	n / a

Reads the installed options inside the LMG. The return value is a long parameter where the bits have following function (bit set $=$ option installed):
Bit 0: COM A interface
Bit 1: COM B interface
Bit 2: Printer interface
Bit 3: IEEE488.2 interface
Bit 5: Floppy disk drive

Bit 6: Processing signal interface
Bit 8: Flicker
Bit 9: Harm100
Bit 16: Linked values
Bit 17: CE Harmonics
Bit 19: Ethernet LAN
Bit 23: USB interface
Bit 24-26: 3 bit with the number of installed power measuring channels
Bit 28-31: 4 bit with the number of installed DSP

9.2.13.8 :PHEader

PHDR
SCPI: :SYSTem:PHEader <string program data>
SHORT: PHDR <string program data>

ID:	n/a	Mode:	All
Type:	string	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Sets or reads the printer header. At *RST this value is deleted.
For example
PHDR „HELLO"
would cause to output „HELLO" before each printing.

9.2.13.9 :TIME TIME

SCPI: :SYSTem:TIME <NRf>,<NRf>,<NRf>
SHORT: TIME <NRf $>,<$ NRf $>,<N R f>$

ID:	n / a	Mode:	All
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Reads and sets the system time. Format is TIME hh,mm,ss. Example: TIME 10,26,46 sets the time to 10:26:46.

9.2.13.10 :VERSion? VER?

SCPI: :SYSTem:VERSion? /qonly/
SHORT: VER?/qonly/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n/a
Value:	1999.0	List:	n / a
Unit:	n/a	Group:	n/a

Returns the version of the SCPI implementation. Returns always '1999.0'.

9.2.14 :TRIGger commands

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
STATus
:SYSTem
:TRIGger }->\mathrm{ :ACTion
    :ICURrent
    :INTerval
[:SEQuence]
```


9.2.14.1 :ACTion
 ACTN

SCPI: :TRIGger:ACTion/nquery/
SHORT: ACTN/nquery/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Defines an action which has to be performed, when :INIT:CONT is set to ON and a trigger event occurs. All program headers which follow behind the ';' after TRIG:ACT will be used, until the end of the program message.

Example: ACTN;UTRMS?;ITRMS?
This defines that each time a trigger event occurs in the INIT:CONT ON state, the TRMS values of voltage and current are returned. See also 9.2.6.1, ':CONTinuous

CONT'. The same example in SCPI syntax would be.

:TRIG:ACT;:FETC:TRMS?;:FETC:CURR:TRMS?

There is no *RST default value!

9.2.14.2 :ICURrent
 IINC

SCPI: :TRIGger:ICURrent/nquery/
SHORT: IINC/nquery/

ID:	n / a	Mode:	All
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Triggers the measuring of the inrush current. The value for the inrush current is reset to 0 . See also 9.2.4.1.1.6

9.2.14.3 :INTerval

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger }->\quad:ACTio
    :ICURrent
    :INTerval }->\quad\mathrm{ :RESet
[:SEQuence] :STARt
```


9.2.14.3.1 :RESet RESET

SCPI: :TRIGger:INTerval:RESet/nquery/
SHORT: RESET/nquery/

ID:	n/a	Mode:	Normal
Type:	n/a	Suffix:	n/a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Resets the energy measurement.

9.2.14.3.2 :STARt START

SCPI: :TRIGger:INTerval:STARt/nquery/
SHORT: START/nquery/

ID:	n / a	Mode:	Normal, CE-Harm, Flicker
Type:	n/a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Starts a time dependent measuring (e.g. energy, flicker, ...).
Note: Usually you have lots of configuration before a start. This can take some time to set up. So start will be executed after all configuration has been done. This can be much later than sending the command. To prevent this, it can be useful to have a *OPC? and to wait for the answer before a START command. By this the point of execution is much closer to the time when sending the command.

9.2.14.3.3 :STOP STOP

SCPI: :TRIGger:INTerval:STOP/nquery/ SHORT: STOP/nquery/

ID:	n / a	Mode:	Normal, CE-Harm, Flicker
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

Stops a time dependent measuring (e.g. energy, flicker, ...)

9.2.14.3.4 :TREStart TRST

SCPI: :TRIGger:INTerval:TREStart/nquery/
SHORT: START/nquery/

ID:	n / a	Mode:	Normal
Type:	n / a	Suffix:	n / a
Value:	n / a	List:	n / a
Unit:	n / a	Group:	n / a

(Re)starts the transient search.

9.2.14.3.5 :TSTop TSTP

SCPI: :TRIGger:INTerval:TSTop/nquery/
SHORT: TSTP/nquery/

ID:	n/a	Mode:	Normal
Type:	n/a	Suffix:	n/a
Value:	n/a	List:	n/a
Unit:	n/a	Group:	n/a

Stops a transient search.

9.2.14.4 [:SEQuence]

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger }->\mathrm{ :ACTion
        :ICURrent
        :INTerval
        [:SEQuence] }->\mathrm{ :DEModulator
        :HPASs
```


9.2.14.4.1 :DEModulator TRGA

SCPI: :TRIGger[:SEQuence]:DEModulator $<$ NRi $>[,<\mathrm{NRi}>]$
SHORT: TRGA <NRi>[,<NRi>]

ID:	n / a	Mode:	Normal, HARM100
Type:	long int	Suffix:	n / a
Value:	$0 \ldots .2$	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi $>], 0=\mathrm{A}, 1=\mathrm{B}, \ldots$

Sets or reads the AM demodulator setting. Possible values are:
0 for demodulator switched off [$*$ RST default value]
1 for AM-demodulator with carrier $<1 \mathrm{kHz}$
2 for AM-demodulator with carrier $>1 \mathrm{kHz}$

9.2.14.4.2 :HPASs TRGP

SCPI: :TRIGger[:SEQuence]:HPASs $<$ NRi $>[,<\mathrm{NRi}>]$
SHORT: TRGP <NRi>,$<\mathrm{NRi}>]$

ID:	n/a	Mode:	Normal, HARM100
Type:	long int	Suffix:	n/a
Value:	$0 \ldots . .2$	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi>], $0=A, 1=B, \ldots$

Sets or reads the synchronisation highpass. Possible values are:
0 switched off [*RST default value]
$1>0.5 \mathrm{~Hz}$
$2>30 \mathrm{~Hz}$

9.2.14.4.3 :LPASs TRGT

SCPI: :TRIGger[:SEQuence]:LPASs $<$ NRi $>[,<$ NRi $>]$
SHORT: TRGT <NRi>[,<NRi>]

ID:	n / a	Mode:	Normal, HARM100
Type:	long int	Suffix:	n / a
Value:	see below	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi>], $0=\mathrm{A}, 1=\mathrm{B}, \ldots$

Sets or reads the synchronisation low pass. Possible values are:
0 switched off [*RST default value]
$5 \quad 5 \mathrm{~Hz}$
1010 Hz
20 20Hz
$50 \quad 50 \mathrm{~Hz}$
100100 Hz

200	200 Hz
500	500 Hz
1000	1 kHz
2000	2 kHz
5000	5 kHz
10000	10 kHz
20000	20 kHz
50000	50 kHz

9.2.14.4.4 :SOURce
 SYNC

SCPI: :TRIGger[:SEQuence]:SOURce <NRi>[,<NRi>]
SHORT: SYNC <NRi>[,<NRi>]

ID:	n / a	Mode:	Normal, HARM100
Type:	long int	Suffix:	n / a
Value:	$0 \ldots . .4$	List:	n / a
Unit:	n / a	Group:	optional $[,<$ NRi>], $0=\mathrm{A}, 1=\mathrm{B}, \ldots$

Sets or reads the synchronisation source. Possible values are:
' 0 ' or 'LINE' for line synchronisation
' 1 ' or 'EXTS' for external synchronisation
'2' for synchronisation to the voltage signal U1 [*RST default value]
'3' for synchronisation to the current signal I1
'4' for synchronisation to the voltage signal U2
'5' for synchronisation to the current signal I2
' 6 ' for synchronisation to the voltage signal U3
'7' for synchronisation to the current signal I3
' 8 ' for synchronisation to the voltage signal U4
'9' for synchronisation to the current signal I4
' 10 ' for synchronisation to the voltage signal U5
' 11 ' for synchronisation to the current signal I5
' 12 ' for synchronisation to the voltage signal U6
'13' for synchronisation to the current signal I6
' 14 ' for synchronisation to the voltage signal U7
' 15 ' for synchronisation to the current signal I7
'16' for synchronisation to the voltage signal U8
' 17 ' for synchronisation to the current signal I8
'18' for synchronisation on external current clamp (SyClamp, accessory L50-Z19)

Note

Only values which are members of a group are valid. If you have a wiring $3+1$, you can't select signal U4 for group A!

9.2.14.5 :CONTrol
 TCTL

SCPI: :TRIGger:TRANsient:CONTrol <NRi> SHORT: TCTL <NRi>

ID:	n/a	Mode:	Normal
Type:	long int	Suffix:	n/a
Value:	0,1	List:	n/a
Unit:	n/a	Group:	n/a

Controls the transient search. Possible values are:
0: Stop
1: Start

9.2.15 Special commands

9.2.15.1 :GTL
 GTL

SCPI: :GTL /nquery/
SHORT: GTL /nquery/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Sets the instrument back to the local state (go to local). This should be the last command of a remote control sequence
9.2.15.2 :LEN LEN

SCPI: :LEN/nquery/
SHORT: LEN/nquery/

ID:	n/a	Mode:	All
Type:	n/a	Suffix:	n / a
Value:	n/a	List:	n / a
Unit:	n/a	Group:	n / a

Initiates the LMG's remote state but adjustments made via the front panel keyboard of the meter will also be accepted (local enable). It depends on the applications if it is useful or not.

9.2.16 Example 1

Following you find a small example for periodic data exchange via RS232 interface:

```
' QBasic 1.1
' Example for reading data from a LMG95/450/500
' LMG should be set to following:
' MEASURING Menu
' Normal measuring mode, 500ms cycle time
IF/IO (OPTIONS) Menu
```

```
' Rmote Device: COM1 RS232
' Dev.: COM1: }9600\mathrm{ Baud, EOS <lf>, Echo off, Protocol None
' Connect COM1 of your PC to COM1 of LMG with a 1:1 cable (all pins
' connected, no NULL modem).
DECLARE FUNCTION readans$ ()
OPEN "COM1:9600,N,8,1,ASC,CDO,CSO,DSO,OPO,RS,TB2048,RB4096" FOR RANDOM AS #1
PRINT #1, "syst:lang short" + CHR$(10); ' Change command set
PRINT #1, "actn;utrms?;itrms?" + CHR$(10); ' Request Utrms and Itrms
PRINT #1, "cont on" + CHR$(10); ' Continue output
DO
    answer$ = readans$ ' Read answer from LMG
    val1 = VAL (answer$) ' Calculate values
    val2 = VAL (MID$ (answer$, 1 + INSTR(1, answer$, ";")))
    PRINT USING "Answer:& Value1: ###.###V Value2: ##.#####A"; readans$; val1; val2
LOOP UNTIL INKEY$ = CHR$(32) ' LOOp, until SPACE bar pressed
PRINT #1, "cont off" + CHR$(10); ' Stop continue output
SLEEP 1
PRINT #1, "gtl" + CHR$(10); ' Go back to local mode
CLOSE #1
FUNCTION readans$
    answer$ = ""
    DO
        a$ = INPUT$(1, 1) ' Read character from interface
        IF a$ <> CHR$(10) THEN ' If it is not the EOS character
                answer$ = answer$ + a$ ' add character to answer string
    END IF
    LOOP WHILE a$ <> CHR$(10) ' LOOP until EOS is reached
    readans$ = answer$ ' return answer
```

END FUNCTION

9.2.17 Example 2

Following you find a small example for one time data exchange via RS232 interface. Additionally to the SCPI commands you find the same functionality in SHORT syntax.

```
' QBasic 1.1
' Example for reading data from a LMG95/450/500
' LMG should be set to following:
' MEASURING Menu
' Normal measuring mode, 500ms cycle time
' IF/IO (OPTIONS) Menu
' Rmote Device: COM1 RS232
' Dev.: COM1: }9600\mathrm{ Baud, EOS <lf>, Echo off, Protocol None
' Connect COM1 of your PC to COM1 of LMG with a 1:1 cable (all pins
' connected, no NULL modem).
DECLARE FUNCTION readans$ ()
OPEN "COM1:9600,N,8,1,ASC,CD0,CS0,DS0,OP0,RS,TB2048,RB4096" FOR RANDOM AS #1
PRINT #1, "READ:CURRENT:TRMS;:FETCH:VOLTAGE:TRMS" + CHR$(10); 'Request values
(SCPI)
`PRINT #1, "SYST:LANG SHORT" + CHR$(10); 'Change Language to SHORT
`PRINT #1, "INIM;ITRMS?;UTRMS?" + CHR$(10); 'Request values (SHORT)
DO
    answer$ = readans$ ' Read answer from LMG
    val1 = VAL (answer$) ' Calculate values
    val2 = VAL (MID$ (answer$, 1 + INSTR(1, answer$, ";")))
    PRINT USING "Answer:& Value1: ##.####A Value2: ###.###V"; readans$; val1; val2
LOOP UNTIL INKEY$ = CHR$(32) ' LOOp, until SPACE bar pressed
PRINT #1, "gtl" + CHR$(10); ' Go back to local mode
```

CLOSE \#1

```
FUNCTION readans$
    answer$ = ""
    DO
        a$ = INPUT$(1, 1) ' Read character from interface
        IF a$ <> CHR$(10) THEN ' If it is not the EOS character
            answer$ = answer$ + a$ ' add character to answer string
        END IF
    LOOP WHILE a$ <> CHR$(10) ' LOOP until EOS is reached
    readans$ = answer$ ' return answer
END FUNCTION
```


9.2.18 Testing the interface using a terminal program

For testing the interface, or how any commands work it is recommended to use a terminal program (e.g. Hyperterminal under WINDOWS).

Setup the instrument pressing $I F / I O$ several times until you reach the IF/IO menu. With IF you reach the setup menu. If the instrument should be in the remote state switch it back to local by Goto Local. Choose the profile 'ComA: Terminal' and connect the ComA jack with a 1:1 cable to your PC.

Now setup you computer. Start you terminal program and set it up to 9600Baud, 8Data Bit, 1 Stop Bit, No Parity and No Protocol. Select the correct com port of your computer.

If you now type in '*IDN?' and press Return, the status bar of LMG should change from 'Active Local' to 'Active Remote'. If not, check if the characters you typed in are echoed on your screen or not.

If everything is ok, then you get an answer string with the manufacturer, the device, the serial number and the software version.

If all this fails, check all settings and cables and try again.

9.2.19 SCPI command Example

This shows you as an example (in SCPI language), what you could send, what the instrument should answer and some comments about this. Some of the responses like measuring values depend on measured signals, so they may be different, if you try this examples. This examples work with a new powered on instrument (no commands before!). For testing some functions we recommend to use the RS232 interface, because it is much more simple to use than the IEEE interface. In principal the example works with both interfaces. This should help you to program your requests and to understand how to communicate with the instrument.

Two comments on the syntax in the 'Sent' column: A ' \cup ' stands for a space character, a 'ل• for the <cr> (carriage return) character (which is the enter key, if you use for example a RS232 terminal-program on your PC).

No．	Sent	Received	Comments
1	＊rst」		Reset the instrument to it＇s default values． After this first command the instrument changes to the remote state．
2	＊idn？ل	ZES ZIMMER Electronic Systems GmbH，LMG500， serial number，version	You ask the instrument for it＇s identification．
3a	fetc：volt：trmsn？لـ	0	Reads out the voltage of channel $\mathbf{n}(=\mathbf{1 , 2 , \ldots})$ ． You don＇t get the actual value，because there has been no values copied to the interface buffer
3b	read：volt：trmsn？」	220.34	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage
3c	fetc：volt：trmsn？」	220.34	No values were copied to the interface buffer， so you get the same result！
4a	read：volt：trmsn？；：rea d：curr：trmsn？」	220．21；0．6437	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage．Then the instrument waits until the end of the next measuring cycle，copies the values to the interface buffer and outputs the actual current．The voltage and current are from different measuring cycles！！
4b	read：volt：trmsn？；：fet c：curr：trmsn？」	221．13；0．6432	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage and current．The voltage and current are from the same measuring cycle！！
4c	read：volt：trmsn？」 fetc：curr：trmsn？」	217．75；0．6135	Waits until the end of the measuring cycle， copies the values to the interface buffer and outputs the actual voltage and current of channel \mathbf{n} ．The voltage and current are also from the same measuring cycle！！
5a	$\begin{aligned} & \text { calc:form } \cup, \mathrm{Bpk}=\mathrm{Ur} \\ & \text { ect/(4*f*3*0.000091 } \\ & 6) ; _ \\ & \mathrm{Hpk}=\mathrm{Ipp} / 2 * 3 / 0.0856 \\ & 08 ; \longleftarrow \\ & \mathrm{Ua}=\mathrm{Bpk} / 1.2566 \mathrm{e}- \\ & \text { 6/Hpk;"‘ } \end{aligned}$		Enters the script between the „＂signs．This script is stored in the script editor and executed from the next measuring cycle．
5b	read：var？$\cup(0: 1) \downarrow$	3．4567，2．8405	Waits until the end of the measuring cycle， copies the values to the interface buffer and outputs the variables 0 to $1(\mathrm{Bpk}$ and Hpk$)$ ． Both are from the same measuring cycle！！
6a	fetc：volt：trm3？」		You misspelled the request

No.	Sent	Received	Comments
6b	syst:err:all? ل	command header error:TRM3	You ask the error queue what happened and get the answer. If you have misspelled more than this command, you get more answers.
7a	inst:sel $\cup 1 ;$ *opc?」		Switch to the CE harmonics mode
7b	read:harm:curr:ampl $\mathbf{n} ? \cup(3: 5)$	1.2346,00034,0.9984	Waits until the end of the measuring cycle, copies the values of channel \mathbf{n} to the interface buffer and outputs the amplitudes of the current harmonics of order 3 to 5 . All are from the same measuring cycle!!
7c	inst:sel \cup norml; *opc?」		switch back to the normal measuring mode
8a	trig:act;:fetc:volt:trm s?::fetc:pow? لـ		Defines that the voltage and the power should be output after every measuring cycle, without any further request.
8b	init:cont \downarrow	$\begin{array}{\|l} \hline 220.34 ; 15.345 \\ 220.19 ; 15.217 \\ \ldots . \end{array}$	Activates this continuous output of the values defined with 'actn'. (until the CONT OFF command!)
8c	init:cont \cup off \downarrow		stops the continuous output.
9a	mem:fre $\cup o n$		freezes the scope memory
9b	sens:wav:iupd;:sens :wav:sbtr? $\cup 1 ;:$ sens: wav:satr? \cup	$-3204,+4506$	calculates new information to the sampled values of group B ($0=$ group A, $1=$ group B), reads how much values are stored before and after the trigger
9c	$\begin{aligned} & \text { sens:wav:wave? } \cup 5, \\ & (-100: 100) \downarrow \end{aligned}$	220.45, 221.36 ... (comma separated one dimensioned array with the size 201)	Reads out the sampled values of the voltage
9d	mem:fre $\cup o f f, \downarrow$		deactivates the scope memory
10	gtl		Changes from the remote to the local state. So the instrument can be controlled manually

9.2.20 SHORT command Example

This shows you as an example (in SHORT language), what you could send, what the instrument should answer and some comments about this. Some of the responses like measuring values depend on measured signals, so they may be different, if you try this examples. This examples work with a new powered on instrument (no commands before!). For testing some functions we recommend to use the RS232 interface, because it is much more simple to use than the IEEE interface. In principal the example works with both interfaces. This should help you to program your requests and to understand how to communicate with the instrument.

Two comments on the syntax in the＇Sent＇column：A＇\cup＇stands for a space character，a＇ل $ل$ for the＜cr＞（carriage return）character（which is the enter key，if you use for example a RS232 terminal－program on your PC）．

No．	Sent	Received	Comments
1	＊rst」		Reset the instrument to it＇s default values． After this first command the instrument changes to the remote state．
2	＊idn？」	ZES ZIMMER Electronic Systems GmbH，LMG500， serial number，version	You ask the instrument for it＇s identification．
3	syst：lang short \downarrow		Switch to the SHORT command set
4a	utrmsn？لـ	0	Reads out the voltage of channel $\mathbf{n}(=\mathbf{1 , 2 , \ldots})$ ． You don＇t get the actual value，because there has been no values copied to the interface buffer
4b	inim；utrmsn？」	220.34	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage
4c	utrmsn？لـ	220.34	No values of channel \mathbf{n} were copied to the interface buffer，so you get the same result！
5a	inim；utrmsn？；inim；i trmsn？」	220．21；0．6437	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage．Then the instrument waits until the end of the next measuring cycle，copies the values to the interface buffer and outputs the actual current．The voltage and current are from different measuring cycles！！
5b	inim；utrmsn？；itrmsn ？	221．13；0．6432	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage and current．The voltage and current are from the same measuring cycle！！
5c	inim；utrmsn？」 itrmsn？」	217．75；0．6135	Waits until the end of the measuring cycle， copies the values of channel \mathbf{n} to the interface buffer and outputs the actual voltage and current．The voltage and current are also from the same measuring cycle！！
6a	$\begin{aligned} & \text { form } \cup, \mathrm{Bpk}=\mathrm{Urect} /(\\ & 4 * \mathrm{f} * 3 * 0.0000916) ; \\ & - \\ & \mathrm{Hpk}=\mathrm{Ipp} / 2 * 3 / 0.0856 \\ & 08 ; \downarrow \\ & \mathrm{Ua}=\mathrm{Bpk} / 1.2566 \mathrm{e}- \\ & 6 / \mathrm{Hpk} ; ‘ \downarrow \end{aligned}$		Enters the script between the＂＂signs．This script is stored in the script editor and executed from the next measuring cycle．

No．	Sent	Received	Comments
6b	inim；var？$\cup(0: 1)$	3．4567，2．8405	Waits until the end of the measuring cycle， copies the values to the interface buffer and outputs the variables 0 to $1(\mathrm{Bpk}$ and Hpk$)$ ． Both are from the same measuring cycle！！
7a	utrm3？ل		You misspelled the request
7b	errall？」	command header error：UTRM	You ask the error queue what happened and get the answer．If you have misspelled more than this command，you get more answers．
8a	mode 1 1；＊opc？ل」		Switch to the CE harmonics mode
8b	INIM；HIAM？$\cup(3: 5$ ）．」	1．2346，00034，0．9984	Waits until the end of the measuring cycle， copies the values to the interface buffer and outputs the amplitudes of the current harmonics of order 3 to 5 ．All are from the same measuring cycle！！
8c	mode \cup norml； ＊opc？\downarrow		switch back to the normal measuring mode
9a	actn；utrmsn？；pn？」		Defines that the voltage and the power of channel \mathbf{n} should be output after every measuring cycle，without any further request．
9b	cont \cup on」	$\begin{aligned} & 220.34 ; 15.345 \\ & 220.19 ; 15.217 \\ & \ldots . \end{aligned}$	Activates this continuous output of the values defined with＇actn＇．（until the CONT OFF command！）
9c	cont \cup off」 $ل$		stops the continuous output．
10a	frz ${ }^{\text {a }}$		freezes the scope memory
10b	sact1；sbtr？$\cup 1 ;$ satr？ $\cup 1 . 」$	$-3204,+4506$	calculates new information to the sampled values of group $\mathrm{B}(0=$ group $\mathrm{A}, 1=$ group B），reads how much values are stored before and after the trigger
10c	$\begin{array}{\|l} \hline \text { wave1? } \cup 5,(- \\ 100: 100) . ل \end{array}$	220．45， 221.36 ．．． （comma separated one dimensioned array with the size 201）	Reads out the sampled values of the voltage of channel 1
10d	frz \cup off \downarrow		deactivates the scope memory
11	gtl		Changes from remote to the local state．So the instrument can be controlled manually

9．3 Physical devices

The physical devices are the jacks at the rear panel of the instrument．

9．3．1 The serial interfaces

The most simple but universal interface．The LMG has build in two of them in the standard instrument．

Both can be used for data logging as well as for remote control. The maximum transfer rate is 115200 Baud. That are about 10000 characters per second. By this you are able to transfer also the very many harmonic values in real time to your PC.

Together with the BMP2PC software (available from our homepage) you can also get screen shots via the serial interface onto your PC.

With the same speed you can also remote control the instrument, send commands and get answers.

9.3.1.1 ComA, RS232

In this female connector a null modem is implemented. That means if you want to connect ComA of the LMG to a PC you have to use a cable which connects 1:1 (without a null modem function).

Figure 40: ComA connector

Pin	1	2	3	4	5	6	7	8	9
Comment	nc	TxD	RxD	nc	GND	nc	CTS	RTS	nc

9.3.1.2 ComB, RS232

In this male connector no null modem is implemented. That means if you want to connect ComB of the LMG to a PC you have to use a cable with null modem function.

Figure 41: ComB connector

Pin	1	2	3	4	5	6	7	8	9
Comment	DCD	RxD	TxD	DTR	GND	DSR	RTS	CTS	RI

9.3.2 IEEE488.2

This interface is also known as IEC625 bus or GPIB. By it you can implement the LMG into an existing bus system.

The IEEE interface can just be used for remote control, not for logging. The maximum data transfer is about 1 Mbytes per second. This and the connection of several other devices makes this bus a standard for complex measuring systems

This port has the pinout defined in the standard IEEE488. You can use the standard cables.

9.3.3 Parallel Port

Whenever you want to print out data directly, this interface is used. In the LMG we have implemented drivers for the most popular printers. They are just needed, if you want to print out graphics.

Like with the serial interface you can print out cyclic values as tables.
Printers are not the fastest devices, so it can happen, that the printer gets more data than it can handle. In this case the printing is interrupted

This port has the same pinout like a PC parallel port. You can use the same cables.

10 Logging of values to drives, printer and interfaces

All menues you see can be stored to a memory card, floppy disk drives, interfaces or can be printed out. In principal you get what you see. Some exceptions are described in the individual chapters (e.g. you get all harmonics, not only the visible). If you want to record in single mode you get the values you see. That means when you have frozen the display you get the frozen values. If you are in a periodic mode then you get the actual values, also if you have frozen the display.

The data logging is handled in a way that you have to press as few keys as possible to get the result: To output the measured values periodically or one time to an interface or storage media.

There are no menus where you have to choose the values you want to output. Choose just one of the available menus and press Print/Log.

You get an dialog box where you can choose the destination of the logging (with Dest.). This can be a file, an interface or a printer.

Each single destination entry in this menu describes an output device and its most important setting. For storage media this is the file name, for the printer the printer type and for the interfaces the baud rate. This and other settings you can change at any time by pressing Set. Your changes are stored in so called 'profiles'. This profiles are stored in the memory. They are just valid in their environment: If you change the baud rate of ComA for logging, the baud rate of ComA for remote control is not changed!

In the dialog box you see further on the state of the chosen destination device. For storage media you see here also the available size and the number of stored files. For printers you can get 'printer ready', 'printer busy' or 'paper empty'.

10.1 Start of logging

The logging itself starts, if you close the dialog box with Enter. (if you press Esc you close the box without storing). In the status bar you get at the right side a red/green flashing log display while the logging is active.

If you want to output to a serial interface it could happen, that this interface is already reserved for remote control. In this case you are asked, if you want to change the usage of this interface from remote control to logging. If you say 'Yes' the usage is changed. Please make sure, that you don't have any remote controlled data transfer before you press Enter.

10.2 End of logging

To stop an periodic output (one time outputs are stopped automatically) you have to press Print/Log again. By pressing Enter you stop the logging, with Esc you leave the dialog box

10.3 Logging profiles (output devices)

Following profiles are accessible after pressing Dest.:

Disk(Data): filename

Writes the data of the actual menu to the file 'filename'. As default this is 'LOG', but you can choose any other name with up to 6 characters. This name is expanded by a two digit number which is incremented with each new logging. The extension is always '.AT'. Some examples for filenames are (the number is generated by the LMG):

LOG00.DAT

LOG01.DAT
MYDAT05.DAT
MOTOR_01.DAT
MOTOR_02.DAT
If you want to know, which files already exist on a media, how much space is available or if you want to setup anything press Set.

Here you can choose a new name for the next logging with File. By pressing Mark* you can mark/unmark files and delete them with Del*. With Clear Disk you format a media.

Typ. lets you choose another output format (see 10.4, 'Output formats')

Caution

Do never remove the media, while a logging is in progress. This can corrupt the files and destroy your measuring results!

Disk(Scr): filename

Saves a screen shot of the displayed menu as a PCX file at the media. All settings are identical to ' $\operatorname{Disk}(D a t a)$ ', except the Typ. is fixed to 'PCX'.

ComA: baudrate

The measuring values are transferred in the chosen 'Output as' format via ComA with the displayed baud rate. With Set you can change baud rate, protocol or the format. For the connection to the PC you have to use a 1:1 cable.

ComB: baudrate

Same like 'ComA: baudrate', but another jack and you have to use a null-modem cable.

ComA: BMP2PC

If you don't have a storage media but want to get screen shots, you can use this profile. Use our program BMP2PC (available on our homepage www.zes.com) and connect your PC with a 1:1 cable with ComA. Then you can transfer a screen shot to the PC and the receiving program stores it as a bitmap file.

Lpt: printer

On a connected printer you can output measuring values as well as hardcopies of the actual screen. The 'output as displayed' is pure text, so that you can connect almost every printer. For a graphical output you have to setup the correct printer type. Due to the growing number of printers it's not possible to write a driver for each type. So we implemented 5 generic drivers which can drive most available printers:
EPSON 9-Pin
EPSON ESP/P
EPSON ESP/P2
HP DeskJet
HP LaserJet

In case of any doubts please contact your local computer shop.
After pressing Set you can setup the model (Prn) and the output format (Output as). Further on you can create a comment (Rem) which is also printed (see 10.5, 'Remarks, header lines').

Some models try to get a complete image of a page in their RAM before they start printing. Therefore you might think, the printer is not working, if you send it just some few lines.

It's not a good idea to output a page after just few lines. Therefore we send as default no form feed to the printer. But you can change this with At end: instead of 'None' setup 'paper out'. Or you can press Page out to do this manually, when you like.

10.3.1 Output intervals

With Mode you can setup how often the values should be output:
every cycle The values are periodically output after each measuring cycle. Please make sure, that the output device is fast enough!
periodic The values are output after the interval you set up. The minimum time is 10s. After you have chosen 'periodic' you get this time in a highlighted box. If the value is ok, you press just Enter. If not press Per. and change it. Leave the box with Enter.
every integral The output interval depends on the settings of the Int. Time menu. The outputs starts, if you have started an integration. For the different integration modes you get:
continuous Output at end of measuring cycle
interval One time output after the integration time is over.
periodic Periodic after each integration time
summing Output at end of measuring cycle
by script The output is done, when the print () function in the script editor is called (see 4.4.4.2.7, 'Functions').

10.4 Output formats

Output as displayed

As default the values are output in the same position like at the display. A one-time output of default menu, $1^{\text {st }}$ channel could look like this:

```
Itrms:1= 0.0270 A
Utrms:1= 0.1414 v
P:1=-0.004 W
Q:1= 0.000 var
S:1=0.004 VA
PF:1= 0.9992
```


Output as csv (Excel)

At periodic output it is an advantage, if the values are ordered by time. To do this choose the 'csv (Excel)' format.

```
dt/s,Itrms1/A, Utrms1/V,P1/W, Q1/var, S1/VA
216.00E-03, 289.94E-03, 221.61E+00, 41.313E+00, 49.210E+00, 64.253E+00
716.00E-03, 289.51E-03, 221.68E+00, 41.290E+00, 49.132E+00, 64.178E+00
1.2160E+00, 289.64E-03, 221.59E+00, 41.172E+00, 49.234E+00, 64.180E+00
1.7230E+00, 290.86E-03, 221.45E+00, 41.291E+00, 49.435E+00, 64.410E+00
2.2160E+00, 289.72E-03, 221.54E+00, 41.261E+00, 49.164E+00, 64.184E+00
2.7160E+00, 289.95E-03, 221.57E+00, 41.335E+00, 49.181E+00, 64.245E+00
3.2160E+00, 289.21E-03, 221.54E+00, 41.206E+00, 49.065E+00, 64.073E+00
3.7160E+00, 289.75E-03, 221.46E+00, 41.280E+00, 49.126E+00, 64.167E+00
4.2160E+00, 289.83E-03, 221.44E+00, 41.232E+00, 49.181E+00, 64.178E+00
4.7160E+00, 290.01E-03, 221.50E+00, 41.290E+00, 49.210E+00, 64.238E+00
```

$5.2160 \mathrm{E}+00,289.41 \mathrm{E}-03,221.51 \mathrm{E}+00,41.262 \mathrm{E}+00,49.066 \mathrm{E}+00,64.109 \mathrm{E}+00$
The measuring values are written in scientific format without identifier or unit into a table. By this it is very easy to load such data into for example EXCEL. Invalid values are marked as '--------'. Each line ends with <CR><LF>.

The first column is always the time in seconds after the start of the logging. In general this is an integer multiple of the cycle time. In the harmonic and flicker modes you find here the number of signal periods which were used for analysis. So if you know the signal frequency you can calculate the real time (an exception is the Harm100 mode, because here the measuring has to be done with gaps!)

10.5 Remarks, header lines

At the start of each output (floppy disk, memory card, printer, ...) you can place several comment/header lines. When logging periodically, this header lines are just printed at the start of logging.

When editing this field (see 10.3, 'Logging profiles (output devices)') you can use a pre defined example with Exmp. You can modify and delete this example by Edit. If you have finished, press End.

You can see standard text and some special identifiers with a leading ' $\$$ '. They will be replaced when logging the header by their real value. In the case of ' $\$$ Cycle' the real cycle time will be inserted at this position. You can select every identifier. For a list of this identifiers please refer chapter 9.2, 'Commands'. The 'ID' field specifies the useable values. They are the same identifiers like for the script editor.

If you log the Default menu with the example header you get following result:

```
My Company
Printed at 22.04.2003 14:22:13
Cycletime 500.00 ms
Voltage at channel 2: 136.99mV
Itrms:1 0.0320 A
Utrms:1 212.01 V
P:1 -0.14 W
Q:1 6.78 var
S:1 6.78 VA
PF:1 20.646 m
```

Like in the script editor you can call the pre-defined lists (see chapter 4.5, 'Entering identifiers, characters and text'). Just remember to use the ' $\$$ ' in front of the identifier.

When „Output as table" in front of each comment line a 'REM' is written to simplify evaluation.

10.6 Storage media

Storage media are used to store single or periodic measuring data. The data format is equal to the data format of the serial or parallel interface. But this data are written immediately and evaluated later on.

Equivalent to a screen dump to a printer you can make a screen shot and store it in the popular PCX file format.

10.6.1 Floppy disk drive

The optional floppy disk drive is a PC compatible $31 / 2$ " drive for 1.44 Mbytes disks.
The file format is MSDOS (FAT) format. So you can read it with each PC with an Microsoft OS.

Floppy disk is a very good medium for data transfer to a PC if you want to evaluate the measured data afterwards. The disadvantage is the slow data transfer and the medium storage capacity. The medium transfer rate is just about 20kbyte per second, if you use a blank, formatted disk.

If you want to store harmonic values you get about 100 harmonics for 4 channels for each measuring cycle. That are 400 values which take about 5000 characters in storage. At 200ms cycle time you have about 25 kbyte per second! In this case it might be better to use a memory card drive.

10.6.2 USB memory stick

The number of files and directories in the root directory must not be more than 150. Else you get the error message „File Table Overflow".

The stick must be formatted with FAT16. FAT32 will not work! The stick must not contain any own operating system (like e.g. Titanium Cruzer). Such an OS must be removed before the usage. The stick must not have more than one partition.

After calling the log dialog it can take several seconds until the structure of the memory stick is analysed. The time increases, if more files or stored on the stick. If the log dialog is opened, the stick must not be removed.

The stick implementation does not support a real formatting of the stick. So if you choose formatting, only the files in the root directory are delete. This can take several seconds. For a real formatting, please use a PC.

10.7 Import of data into PC programs

To get the measuring values into your PC you have two possibilities: You can store them on a storage media or you can send them via the serial interface.

10.7.1 Data exchange via storage media

If you are using a floppy disk it is no problem if you have a standard floppy disk drive.

10.7.2 Data exchange via serial interface

For this you just need a 1:1 cable (or a null modem cable if you are using ComB) and an installed terminal program. On each Windows PC you should have the program 'Hyperterm' already installed.

1. Start Hyperterm and enter any name for the new connection.
2. Choose the COM port which is connected to your PC.
3. Set up this port with following parameters:

Baud rate	115200
Databits	8
Parity	None
Stopbits	1
Protocol	None

4. Hyperterm is now ready to receive data. To test the connection press Print/Log at LMG, choose 'ComA: 115200' as destination. If the baud rate should not be 115200 please set it via Set. If you are using ComB do the same for it..
The mode should be set to 'one-time' and 'output as table'.
5. Press Enter to start the transfer.
6. Hyperterm should now display the values. If not, check the correct ports, cable and all settings. Check also that Hyperterm is 'on-line'. If not, open the connection.
7. Hyperterm receives correct data. You can save the following data into a file via menu 'transfer' and 'save text'
8. Press at LMG Print/Log again and choose now 'every cycle'. Start logging with Enter. In Hyperterm you see now the received data which are stored in background.
9. To stop the logging press Print/Log and Enter.
10.Stop the recording of Hyperterm by closing the text file. If you open this file with any text editor you see the logged data.

10.7.3 Country dependent numbers

Float numbers are output with a dot '.' as decimal separator. This can cause problems, when your computer is set up to use ',' as separator (like for example in Germany). In this case set up your operating system to use the dot '.' as separator.

10.7.4 Reading data into EXCEL

First make sure, that the decimal separator is set up correctly. Then start Excel and load the file. Choose the number of lines Excel should skip to reject the header.

As column separator select a space.
Now the data from the file are read into Excel without any problems.

10.8 Error messages

Drive not ready

You have chosen a storage media as destination, but this media is not plugged in. Press Esc until the message vanishes. Choose another destination or insert the storage media

Operation not permitted

An error occurred while storing. For example the storage media was removed.

Output device too slow - stopped!

The chosen output device is too slow to handle the data in real time. In this case the logging is stopped. Press Esc until the message vanishes. Choose a faster output device or reduce the data volume for example by choosing a longer cycle time.

All values until this message are stored correctly.

11 Miscellaneous

11.1 Frequently asked questions

11.1.1 Uncertainty of measured and computed values

The uncertainty of the directly measured values I, U and P can be found in the tables in 12.3.3, 'Uncertainty'. The following calculations illustrate how to use these tables and how to calculate the uncertainty for other values (λ).

The read value of device should be:
$\mathrm{U}_{\text {trms }}=230.000 \mathrm{~V}$, range 250 V , peak range 400 V
$\mathrm{I}_{\text {trms }}=0.95000 \mathrm{~A}$, range 1.2 A , peak range 3.75 A
$\lambda=0.25000$
$\mathrm{f}=50.0000 \mathrm{~Hz}$
$\mathrm{P}=54.625 \mathrm{~W}$, range 300 W , peak range 1500 W
AC coupling mode for the signal
From the table for the general uncertainty, the following specifications for voltage and current can be determined (using the peak values of the respective measuring range):

$$
\begin{aligned}
& \Delta U= \pm(0.01 \% \text { of Rdg. }+0.02 \% \text { of Rng. })= \pm(0.023 \mathrm{~V}+0.08 \mathrm{~V})= \pm 0.103 \mathrm{~V} \\
& \Delta I= \pm(0.01 \% \text { of Rdg. }+0.02 \% \text { of Rng. })= \pm(0.095 \mathrm{~mA}+0.75 \mathrm{~mA})= \pm 0.845 \mathrm{~mA} \\
& \Delta P= \pm(0.015 \% \text { of Rdg. }+0.01 \% \text { of Rng. })= \pm(8.194 \mathrm{~mW}+150 \mathrm{~mW})= \pm 0.158 \mathrm{~W}
\end{aligned}
$$

Why to use the peak value of a measuring range and not any nominal values?

Analogue instruments use the DC or RMS component of a signal for displaying the true value. Due to some analogue characteristic of their working principle (saturation, non linearities of components, ...) it could happen, that a signal with a small RMS component but a big peak value was disturbed. So these instruments had to specify a maximum allowed crest factor (the ratio of peak value to rms value) for which they could guarantee a reading inside their specifications. But there was no really hard limit for the maximum measurable peak value. The "range" to use for uncertainty calculations was the RMS range for sinusoidal signals.

But the world has changed: Signals become more and more disturbed and modern instruments like this LMG use AD converters. The range is now defined as the biggest
value an ADC can sample, the RMS can be as big as this biggest value (in case of DC) or also very much smaller (for example in case of an inrush current). For this reason the only range value for an uncertainty calculation which could be legitimated physically is the peak value (= the range of the ADC). The RMS value (as well as the not further necessary crest factor) can be defined randomly: A 100 Vpk range can be specified as 70 Vrms range with crest factor 1.43 or as 5 Vrms range with crest factor 20. In other words: It makes sense to specify the crest factor of a signal (to choose the correct peak range) but it is pointless to specify a crest factor for a modern digital instrument. What is the physical information?? Important is, that the peak value is not bigger than the ADC range!

Physically it makes absolutely no sense to specify a RMS range for uncertainty calculations for modern instruments with ADC sampling. That is the reason why ZES ZIMMER uses the physically correct peak value of a range, because this is the true range of the ADC!

The power factor is computed as follows:
$\lambda=\frac{P}{S}=\frac{P}{U * I}$
The uncertainty for power factor is calculated corresponding to the rules of uncertainty computation using the total differential:
$\Delta \lambda=\frac{\partial \lambda}{\partial P} * \Delta P+\frac{\partial \lambda}{\partial U} * \Delta U+\frac{\partial \lambda}{\partial I} * \Delta I$
$\Delta \lambda=\frac{\Delta P}{U^{*} I}-\frac{P^{*} \Delta U}{I * U^{2}}-\frac{P^{*} \Delta I}{I^{2} * U}$
$\Delta \lambda=\frac{0.158 W}{230 V * 0.95 A}-\frac{54.625 W * 0.103 \mathrm{~V}}{0.95 A *(230 \mathrm{~V})^{2}}-\frac{54.625 W * 0.845 \mathrm{~mA}}{(0.95 \mathrm{~A})^{2} * 230 \mathrm{~V}}$
$\Delta \lambda=0.00039$

This is the maximum uncertainty (worst case) that can occur in the calculation of the power factor. The typical uncertainty is two to five times better!

The relative measuring uncertainties are:
$U \%_{\text {measure }}=\frac{\Delta U}{U}=0.045 \%$
$I \%_{\text {measure }}=\frac{\Delta I}{I}=0.089 \%$

$$
\begin{aligned}
& P \%_{\text {measure }}=\frac{\Delta P}{P}=0.289 \% \\
& \lambda \%_{\text {measure }}=\frac{\Delta \lambda}{\lambda}=0.16 \%
\end{aligned}
$$

To get the real uncertainty, the uncertainty of display (1 digit) has to be taken into account:
$U \%_{\text {display }}=\frac{0.01 \mathrm{~V}}{230.0 \mathrm{~V}}=0.004 \%$
$I \%_{\text {display }}=\frac{0.00001 \mathrm{~A}}{0.95 \mathrm{~A}}=0.001 \%$
$P \%_{\text {display }}=\frac{0.001 \mathrm{~W}}{54.625 \mathrm{~W}}=0.002 \%$
$\lambda \%_{\text {display }}=\frac{0.00001}{0.25}=0.004 \%$
This results in the following measuring values:

$$
\begin{array}{ll}
\mathrm{U}_{\text {trms }} & =(230.00 \pm 0.103) \mathrm{V} \\
\mathrm{I}_{\text {trms }} & =(0.9500 \pm 0.00085) \mathrm{A} \\
\mathrm{P} & =(54.625 \pm 0.158) \mathrm{W} \\
\lambda & =0.25000 \pm 0.00039
\end{array}
$$

If you use external sensors please see the ZES Sensors and Accessories Manual for hints, how to calculate the total uncertainty under this circumstances.

11.1.2 Uncertainty of non sinusoidal signals

The standard uncertainties are just given for sinusoidal signals. The reason is, that the national standards usually work just with sinusoidal signals.

To estimate the uncertainty of non sinusoidal signals you can use the following system.
Let's assume you want to measure a square signal with 5 V peak value, 50% duty cycle, no DC value and a frequency of 50 Hz .

First the signal has to be divided into its frequency components. Then the uncertainties of the rms-values of each frequency component have to be calculated. The used uncertainty is the standard uncertainty of reading at the specific frequency according to the technical specification. All these uncertainties have to be added geometrically (because they are rms values with different frequencies). Further on you have to add the uncertainty of the measuring
range at the frequncy with the biggest amplitude (usually the fundamental) once (once because it includes common errors like offset, ...). With this sum you can calculate the total uncertainty. The values in the columns of the following table are:
Frequency (f / Hz)
rms value at this frequency (U / V)
Percentage uncertainty of frequency component according to technical data (\% of value)

- Absolute uncertainty of frequency component $(\Delta \mathrm{U} / \mathrm{mV})$

f / Hz	U / V	Uncertainty in \% of U	Uncertainty $\Delta \mathrm{U} / \mathrm{mV}$
50	4.501	0.01	0.4501
150	1.500	0.02	0.3000
250	0.900	0.02	0.1800
350	0.636	0.02	0.1272
450	0.499	0.02	0.0998
550	0.408	0.02	0.0816
650	0.346	0.02	0.0692
750	0.300	0.02	0.0600

For this example only the harmonics from $1(50 \mathrm{~Hz})$ to $15(750 \mathrm{~Hz})$ have been used. Harmonics of a higher order cause just barely greater uncertainties not affecting the total uncertainty very much like shown in the table.

The geometrical sum of all uncertainties results in an uncertainty of 0.6051 mV .
To that you have to add the uncertainty of the range $(0.02 \%$ of $12 \mathrm{~V}($ peak-value $)=2.4 \mathrm{mV})$.
The total uncertainty is 3.0051 mV which is 0.06% of 5 V .

11.1.3 Hints for setting up the record rate of the scope

The scope function defines the record rate of the sample values indirectly by changing the timebase. When transferring sample values over the interface it is more useful to setup a fix record rate instead of setting up a timebase. The relation between timebase and record rate is described here.

The CAPITAL words are not requestable via interface nor visible on the display. They are here locally introduced to explain the situation.

Scope settings

BASE The only setting for the scope is the timebase, i.e. the time per division in seconds. There are 20 sample values per division used. The timebase can be set in a range from 10μ s to 1 s in a 1-2-5 stepping.

Software parameters

CYCLE The cycle time in seconds.
DIV This is the sample rate pre divider which depends on the selected filter. The following values are possible:
1 without filter
2 with filter > 10 kHz
30 with filter $\leq 10 \mathrm{kHz}$
For the calculation the biggest divider of all groups is used. Example: Group A without filter, group B with 270 kHz Filter, group C with 10 kHz filter. Then DIV=30 is used.

SMPL sampling rate
SMPL $=3 \mathrm{MS} / \mathrm{s} / \mathrm{DIV}$

Hardware parameters

MEM Memory depth: This is always 1048576. In master slave mode the memory is doubled, but there are also more channels, so this values is constant. See CHNS.

CHNS Number of power measuring channels. In master slave mode, CHNS is the maximum number of channels in each single instrument. Example: Master has 4, slave 3 channels. Then CHNS=4 is used.

Internal parameters

ZOOM The display of the values depends on the ZOOM factor. It defines, how many sample values are packed to one display value. The default value is 10 . The parameter ZOOM is changed, if BASE becomes such small, that the requested display can only be reached by reducing ZOOM. In this case not 10 values are packed but less, down to 1 . ZOOM can only be $50,20,10,5,2,1$. With ZOOM=1 every sampled value is stored and displayed. Over the interface you will get every stored value, independent of the ZOOM setting. For the calculation of this value, see below.

FREEZE If the memory is frozen, of course you can't change the sample rate any more. Changing BASE can now only influence the ZOOM value to zoom in or out. Due to
the limited value range of ZOOM, the zooming is also limited. For the influence of this parameter see below.

Results

Following interim values are calculated
RATE Storage rate
RATE $=20 * Z O O M /$ BASE

DUR Storage duration
DUR = MEM / CHNS / RATE

If a special sampling rate is wished, it can be calculated in opposite order:

BASE $=20$ * ZOOM $/$ RATE

Caution: Not every storage rate is possible. By rounding (dividers must always be integers!) and internal divider structures the resulting storage rate can be different from the requested one. It is always necessary to check the storage rate by the GFRQ interface command.

Example: 4 channels, $\mathrm{BASE}=10 \mathrm{~ms} / \mathrm{div}, \mathrm{ZOOM}=10$.
RATE $=20000$ samples $/ \mathrm{s}$
DUR $=13.11 \mathrm{~s}$

Limits

MAXRATE The maximum storage rate. It is limited by the cycle time (CYCLE) and the number of channels (CHNS). Because at least one complete cycle of all channels has to fit into the memory. For administrative purposes the cycle time must be multiplied with a factor of 1.7!
MAXRATE $=$ MEM $/($ CYCLE $* 1.7 *$ CHNS $)$
If MAXRATE is bigger than SMPL then MAXRATE $=$ SMPL!
Example 1: \quad CYCLE $=0.5 \mathrm{~s}, 4 \mathrm{CHNS}$
MAXRATE $=308,457 \mathrm{kS} / \mathrm{s}$ (only 200kS/s settable, see MINBASE)
Example 2: \quad CYCLE $=0.05 \mathrm{~s}, 4 \mathrm{CHNS}$
MAXRATE $=3.08 \mathrm{MS} / \mathrm{s}$ (limited to $3 \mathrm{MS} / \mathrm{s}$!)
This shows, that the maximum sample rate is possible with 4 channels at fastest cycle time.

From above calculation for BASE you get a minimum timebase MINBASE at ZOOM=1 and with the maximum storage rate MAXRATE:

MINBASE $=20 *$ ZOOM $/$ MAXRATE $=20 /$ MAXRATE
Example: $\mathrm{CYCLE}=0.5,4$ CHNS
MINBASE $=64 \mu \mathrm{~s}$.
The next bigger valid value is 100μ s which results in a real RATE of RATE $=20 *$ ZOOM $/$ BASE $=20 \mathrm{kS} / \mathrm{s}$ (see above).

The third limit is a divider. The ration SMPL / RATE must be an integer. If it is not, the resulting number must be scaled down and SMPL must be divided by it to get the real RATE.

Determination of ZOOM

Without Freeze
If you reduce BASE, ZOOM stays at 10 as long as the storage RATE is much smaller than MAXRATE. If it becomes bigger, ZOOM must be reduced to reach a valid rate (see definition of RATE).

For MAXRATE $/$ RATE ≥ 10 you get $\mathrm{ZOOM}=10$
For 5 < MAXRATE / RATE < 10 you get ZOOM = 5
For $2<$ MAXRATE / RATE < 5 you get ZOOM = 2
For MAXRATE / RATE <2 you get $\mathrm{ZOOM}=1$

With Freeze

If Freeze was pressed the actual BASE is stored as LASTBASE. In the same way ZOOM is stored as LASTZOOM.

The zoom factor is now:

ZOOM $=$ BASE * LASTZOOM / LASTBASE
in the range from 1 to 50 . In this case ZOOM has no 1-2-5 stepping, because this comes indirectly from the stepped input of BASE!

Validity of BASE

If the calculated value for ZOOM is outside the range 1-50, the setting of BASE becomes invalid. In this case there is an error message in the display or in the interface system.

Calculation of BASE for a requested sampling rate

ZOOM is always 1, because via interface you can't zoom, i.e. you always get all sample values!

Example 1

You have a 3 phase instrument and want a sampling rate of $150 \mathrm{kS} / \mathrm{s}$ without any filter and a 1 s cycle time. How to setup BASE?

BASE $=20 *$ ZOOM $/$ RATE. So you get BASE $=133 \mu \mathrm{~s} / \mathrm{div}$, the next valid stepped neighbours are $100 \mu \mathrm{~s} / \mathrm{div}$ and $200 \mu \mathrm{~s} / \mathrm{div}$. This results in a real rate of $100 \mathrm{kS} / \mathrm{s} @ 200 \mu \mathrm{~s} / \mathrm{div}$ and $200 \mathrm{kS} / \mathrm{s}$ @ $100 \mu \mathrm{~s} / \mathrm{div}$.

Now we have to check the limits:
MAXRATE $=$ MEM $/($ CYCLE $* 1.7 * \mathrm{CHNS})=205603 \mathrm{kS} / \mathrm{s}$
MINBASE $=20 /$ MAXRATE $=0.97 \mathrm{~ms} /$ div
SMPL $/$ RATE $=30$ resp. 15
Both BASE settings would meet these conditions! You can't setup 150kS/s as sampling rate but $100 \mathrm{kS} / \mathrm{s}$ or $200 \mathrm{kS} / \mathrm{s}$.

Example 2

You have a 3 phase instrument and want a sampling rate of $150 \mathrm{kS} / \mathrm{s}$ with 9.2 kHz filter and a 1 s cycle time. How to setup BASE?

BASE $=20 *$ ZOOM $/$ RATE. So you get BASE $=133 \mu \mathrm{~s} /$ div, the next valid stepped neighbours are $100 \mu \mathrm{~s} / \mathrm{div}$ and $200 \mu \mathrm{~s} / \mathrm{div}$. This results in a real rate of $100 \mathrm{kS} / \mathrm{s} @ 200 \mu \mathrm{~s} / \mathrm{div}$ and $200 \mathrm{kS} / \mathrm{s}$ @ $100 \mu \mathrm{~s} / \mathrm{div}$.

Now we have to check the limits:

MAXRATE $=$ MEM $/($ CYCLE $* 1.7 *$ CHNS $) /$ DIV $=205603 \mathrm{kS} / \mathrm{s}$
MAXRATE is limited to $100 \mathrm{kS} / \mathrm{s}$ due to the filter setting! So the $100 \mu \mathrm{~s} / \mathrm{div}$ is not possible to setup!
MINBASE $=20 /$ MAXRATE $=200 \mu \mathrm{~s} / \mathrm{div}$
SMPL $/$ RATE $=1$

The $200 \mu \mathrm{~s} / \mathrm{div}$ BASE setting meets all conditions and is possible, so the best possible sampling rate is $100 \mathrm{kS} / \mathrm{s}$.

Example 3

You have a 3 phase instrument and want a sampling rate of $3 \mathrm{MS} / \mathrm{s}$ without filter and a 0.05 s cycle time. How to setup BASE?

BASE $=20 *$ ZOOM $/$ RATE. So you get $\mathrm{BASE}=6.7 \mu \mathrm{~s} / \mathrm{div}$, the next valid stepped neighbours are $5 \mu \mathrm{~s} / \mathrm{div}$ and $10 \mu \mathrm{~s} / \mathrm{div}$. The smallest possible value is $10 \mu \mathrm{~s} / \mathrm{div}$, so the other value doesn't matter. This results in a RATE of $2 \mathrm{MS} / \mathrm{s} @ 10 \mu \mathrm{~s} / \mathrm{div}$.

Now we have to check the limits:

MAXRATE $=$ MEM $/($ CYCLE $* 1.7 *$ CHNS $) /$ DIV $=4112063 S / s$
MAXRATE is limited to $3 \mathrm{MS} / \mathrm{s}$ due to the filter setting.
$\operatorname{MINBASE}=20 / \mathrm{MAXRATE}=6.7 \mu \mathrm{~s} / \mathrm{div}$
SMPL $/ \mathrm{RATE}=1.5$, scaled down to 1.0 , resulting in a new RATE $=3 \mathrm{MS} / \mathrm{s} / 1=3 \mathrm{MS} / \mathrm{s}$.

The $10 \mu \mathrm{~s} /$ div BASE setting meets all conditions and is possible, so the best possible sampling rate is $3 \mathrm{MS} / \mathrm{s}$.

11.2 Function fault

If you think you have found an error or function fault in a LMG500 please fill out the following page and send it to ZES. If you think the measuring result are wrong, please also fill out the second page. For this purpose connect the measuring circuit, freeze the screen with the values and fill out the paper with the frozen values.

On the attached CD you find a tool called 'LMG CONTROL'. One feature of this tool is, that it can store all measuring values and a complete configuration in a report file. You can also use this tool to generate a function fault report.

Function fault at a LMG500

To:

Z E S ZIMMER Electronic Systems GmbH
Tabaksmühlenweg 30
61440 Oberursel
Germany
Tel. ++49 (0)6171/628750
Fax ++49 (0)6171 / 52086

Information about the instrument:
Type Plate:
Serial number:
IF/IO Menu: List more
Version: \qquad
Interface: \qquad
Process Signal: \qquad
Flicker: \qquad
Harmonic 100: \qquad
extended memory: \qquad
linked values: \qquad

From:
Name:
Company:
Street:
City:
Country:
Tel:
Fax:

Supply Voltage: \qquad
ext. programs:
Calibration:
PQA:
SYS61K:
TERM-L5: \qquad

Exact error description:
\qquad

Measuring menu

Globals

\qquad Aver: _ Wiring:

Group A

Filter:	
Signal	
HP:	\square

S_Cpl:
Demod:
\qquad
Signal
\qquad LP: \qquad

Group B

Filter:	\square	S_Cpl:
Signal	\square	Demod:
HP:		LP:

Channel 1

Range menu

U jack:		I jack:	
U range:	V	I range:	
U range:	auto/manual	I range:	auto/manual
U scale:		I scale:	-
Sensor-Types, $\mathrm{SN}:$			

Voltage menu	Current menu	Power menu
Utrms:	Itrms:	P:
Uac:	Iac:	Q:
Udc:	Idc:	S:
Upp:	Ipp:	PF:
Upkp:	Ipkp:	f:
Upkn:	Ipkn:	Z:
Urect:	Irect:	Rser:
Ucf:	Icf:	Xser:
Uff:	Iff:	
	Iinr:	

Channel 2

Range menu

U jack:		I jack:	
U range:	V	I range:	
U range:	auto/manual	I range:	auto/manual
U scale:		I scale:	-
Sensor-Types, SN:			

Voltage menu	Current menu	Power menu
Utrms:	Itrms:	P:
Uac:	Iac:	Q:
Udc:	Idc:	S:
Upp:	Ipp:	PF:
Upkp:	Ipkp:	f:
Upkn:	Ipkn:	Z:
Urect:	Irect:	Rser:
Ucf:	Icf:	Xser:
Uff:	Iff:	
	Iinr:	

Channel 3

Range menu
U jack:

	I jack: V	I range:
auto/manual I range: I scale:	auto/manual	
$\overline{\text { pes, } \mathrm{SN}:}$		

Voltage menu	Current menu	Power menu
Utrms:	Itrms:	P:
Uac:	Iac:	Q:
Udc:	Idc:	S:
Upp:	Ipp:	PF:
Upkp:	Ipkp:	f:
Upkn:	Ipkn:	Z:
Urect:	Irect:	Rser:
Ucf:	Icf:	Xser:
Uff:	Iff:	
	Iinr:	

Channel 4

Range menu

U jack:		I jack:	
U range:	V	I range: U range:	auto/manual
I range:	auto/manual		
U scale:		I scale:	
Sensor-Types, SN:			

You can directly print out this menus.
Please sketch also the wiring of LMG500 and equipment under test / measuring signals:

11.3 Maintenance

11.3.1 Calibration

With this precision power meter you have a high end measuring instrument. But you can only take advantage of it's performance, if the instrument is well adjusted and calibrated. Especially with the calibration of third party labs there are very often unnecessary problems. If you let the calibration made by any third party calibration lab, please watch following points:

- The reference instruments might have not the required uncertainty, especially for active AC power.
A very common error is, that reference sources, which some companies call 'calibrator' have not the necessary uncertainty to calibrate this instrument. The calibrators are very useful for many hand held multimeters, but are often worthless when calibrating active power. A common candidate for this error is the Fluke 5500A calibrator.
Please keep in mind, that the reference instrument should be at least 3 times more accurate than the device under test. If not, the precision power meter calibrates the so called calibrator!
- The reference instrument may be traceable for voltage and current, but it is very rare, that it is traceable for active AC power with the required uncertainty. Nevertheless it is common, that calibration labs calibrate active power if only voltage and current are traceable. This happens very often in the context of national calibration services like DKD, UKAS, ...
Here it happens regular, that voltage and current are accredited, but not the active power. So this protocols are worthless for active power!

If a calibration is performed by any third party lab, at least following points should be calibrated to ensure a proper function of the instrument:

- Voltage and current of all ranges at a frequency near to 50 Hz .
- A representative selection of voltage/current range combinations to ensure a proper power reading

The ZES ZIMMER calibration service offers a traceable calibration of all relevant parameters and meets the requirements of IEC17025. Our active power calibration is directly traceable to PTB (Physikalisch Technische Bundesanstalt in Braunschweig).

A further advantage of our calibration service is, that for the case of a service there are no additional shipping costs and time delays.

11.3.1.1 Requirements for reference instruments

As generally known the references, calibration sources and/or reference power meters, have to be in an uncertainty class, which is at least 3 time better than the LMG500. An optimal value is from 5 to 10 times better.

For the allowed uncertainty of the LMG to be calibrated please refer also to chapter 11.1.1, 'Uncertainty of measured and computed values'

11.3.2 Adjustment

The adjustment has to be done at $(23 \pm 1)^{\circ} \mathrm{C}$.
ZES ZIMMER offers in principle a way to adjust the instruments outside our factory, if some technical preconditions are fulfilled. For further information, please contact sales@zes.com

11.3.3 Zero adjustment of the instrument

The zero settings of the LMG can be adjusted without sending the instrument back to the factory. For this purpose remove ALL relevant measuring cables from the instrument and switch to the normal measuring mode. Activate the jack, you want to adjust, in the range menu. Now short circuit the voltage input (U^{*} or $U_{\text {sensor }}$ with U). If you have selected $I_{\text {sensor }}$ also short circuit $\mathrm{I}_{\text {sensor }}$ with I. I^{*} and I_{HF} stay open! Short circuit means, not to connect the inputs with any wire but to connect them as short as possible to get a minimised loop area!

If you want to adjust external sensors connect them, switch to external sensors in the range menu and don't enclose any measuring lead with the sensor.

Warm the instrument up for a minimum of 2 h .
Now press Z-Adj UChn resp. Z-Adj IChn in the Misc. menu (see 4.4.1, 'Misc.').
Answer the warning with Enter if you have setup the instrument correctly. After about 1 minute the instrument is adjusted and a message appears.

If you are in doubt about any detail of this adjustment please contact the manufacturer.
This adjustment is active, while the instrument is switched on. If you switch off and on the instrument, the factory values are loaded.

11.3.4 Battery

In the instrument is a lithium battery for holding several data. It should be checked after 8 years or when any problems occur. In some instruments the battery is plugged, so it can be
exchanged very easy. In other instruments it is soldered, so here it is recommended to exchange the battery in our service department.

11.3.5 Software update

The software of the LMG can be updated by the customer. You get the actual software from our homepage http://www.zes.com or directly by ZES. You need a PC and a serial cable to connect COM1 of your PC to ComA of the LMG. It has to be a $1: 1$ cable without any crossings or null modem functions, where all wires are connected.

If you start the update software on your PC you will get detailed information how to handle.

11.4 Use with an inverter

The power meters of the e LMG series accord to the protection class 1. A use without an earthed protective conductor is not permitted. Inverters (e.g. 12 Vdc to 230 Vac) mostly have no protective conductor. In this case the LMG has to be wired with a protective conductor at the rear panel. Refer the safety rules of the working area.

12 Technical data

12.1 General

Display:
Mains supply: $\quad 100 \ldots 240 \mathrm{~V}, 50 \ldots 60 \mathrm{~Hz}$, max. 150W (depending on options), 2 fuses 5x20mm T 3.15A H 250V IEC60127-2 Sheet 5

Storage temperature: $\quad-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Safety:
EN61010-1, date according to the declaration of conformity.
Normal environmental condition:
Indoor use, altitude up to 2000 m , temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$

Mains supply:
Measurement category CAT II, pollution degree 2
Measuring inputs:
Up to 1000 V : Measurement category CAT III, pollution degree 2
Up to 600 V : Measurement category CAT IV, pollution degree 2
IP20 according EN60529
EMC: EN61326-1, date according to the declaration of conformity.
EN61000-3-2, date according to the declaration of conformity.
EN61000-3-3, date according to the declaration of conformity.
Dimensions: \quad Desktop, 4chn: $433 \mathrm{~mm}(\mathrm{~W}) \times 148 \mathrm{~mm}(\mathrm{H}) \times 506 \mathrm{~mm}$ (D)
19" rack, 4chn: $84 \mathrm{HP} \times 3 \mathrm{U} \times 506 \mathrm{~mm}$
Desktop, 8chn: $\quad 433 \mathrm{~mm}$ (W) x 281 mm (H) x 506 mm (D)
19" rack, 8chn: 84HP x 6U x 506mm
Weight: depending on options, about 12.5 kg with 4 channels, about 20kg with 8 channels.

Figure 42: Dimensions of LMG500
In the above picture you see the desktop instrument in combination with the rack mounting kit.

12.2 Display of values

The measured values are displayed with 6 digits. The position of the decimal point is set to the position which is required to display the maximum allowed TRMS value.

If the TRMS value of a measuring channel is lower than 1.5% of the measurable TRMS value of the range, all channel values are displayed as 0.0 . For example in the 0.6 A current range you get values from 0.018750A...1.87500A and 0.000 A . This zero rejection can be switched off, see 4.4.1, 'Misc.' Misc.

12.3 Measuring channels

12.3.1 Sampling

The sampling is done synchronously at all channels with about 3 MHz per channel.

12.3.2 Ranges

Capacitance between voltage and current channel: 13 pF

12.3.2.1 Voltage channel

Voltage ranges

Rated range value / V	3	6	12.5	25	60	130	250	400	600	1000
Measurable TRMS value / V	3.6	7.2	14.4	30	66	136	270	560	999	1001
Permissible peak value / V	6	12	25	50	100	200	400	800	1600	3200

Overload capability $\quad 1000 \mathrm{~V}$ continuously, 1500 V for 1 s
Input resistance $\quad 4.59 \mathrm{M} \Omega, 3 \mathrm{pF}$
Capacitance against earth 31 pF

Note!

The 'Measurable TRMS value' is the biggest TRMS value which can be measured. That does not mean that it is allowed to measure with that value, if any security standards define other values!

Inputs for voltage sensors with voltage output

Rated range value / V	0.03	0.06	0.12	0.25	0.5	1	2	4
Measurable TRMS value / V	0.037	0.075	0.15	0.3	0.6	1.2	2.5	5
Permissible peak value / V	0.062	0.125	0.25	0.5	1	2	4	8

Overload capability
Input resistance 100 V continuously, 250 V for 1 s

Capacitance against earth 31 pF

12.3.2.2 Current channel

Current ranges wide dynamic, I^{*}

Rated range value / A	0.02	0.04	0.08	0.15	0.3	0.6	1.2	2.5	5	10	20	32					
Measurable TRMS value / A	0.037	0.075	0.15	0.3	0.6	1.25	2.5	5	10	20	32	32					
Permissible peak value / A	0.056	0.112	0.224	0.469	0.938	1.875	3.75	7.5	15	30	60	120					
Resistance incl. Jacks / m Ω	710	710	710	84	84	84	27	27	27	8.4	8.4	8.4					
Continuously overload / A	5	5	5	5	5	5	15	15	15	32	32	32					
Short time overload	150 A for 10 ms																

Capacitance against earth 31 pF

Current ranges high frequent, $I_{H F}$

Rated range value / A	0.15	0.3	0.6	1.2
Measurable TRMS value / A	0.225	0.45	0.9	1.8
Permissible peak value / A	0.313	0.625	1.25	2.5

Overload capability	5 A continuously
Input resistance Ri	$100 \mathrm{~m} \Omega$
Capacitance against earth	31 pF

Inputs for current sensors with voltage output

Rated range value / V	0.03	0.06	0.12	0.25	0.5	1	2	4
Measurable TRMS value / V	0.037	0.075	0.15	0.3	0.6	1.2	2.5	5
Permissible peak value / V	0.062	0.125	0.25	0.5	1	2	4	8

Overload capability $\quad 100 \mathrm{~V}$ continuously, 250 V for 1 s

Input resistance
Capacitance against earth
$100 \mathrm{k} \Omega, 34 \mathrm{pF}$
31 pF

12.3.3 Uncertainty

An example, how to handle this values, you find in 11.1.1, 'Uncertainty of measured and computed values'

Measurement uncertainty

The values are in \pm (\% of measuring value $+\%$ of measuring range)

Frequency	DC	$0.05 \mathrm{~Hz} . .45 \mathrm{~Hz}$, $65 \mathrm{~Hz} . .3 \mathrm{kHz}$	$45 \mathrm{~Hz} . .65 \mathrm{~Hz}$	$3 \mathrm{kHz} . .15 \mathrm{kHz}$	15 kHz .100 kHz
Voltage U^{*}	$0.02+0.06$	$0.02+0.03$	$0.01+0.02$	$0.03+0.06$	$0.1+0.2$
Voltage $\mathrm{U}_{\text {Sensor }}$	$0.02+0.06$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	$0.2+0.4$
Current $\mathrm{I}^{*}, 20 \mathrm{~mA} . .5 \mathrm{~A}$ range	$0.02+0.06$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	$0.2+0.4$
Current $\mathrm{I}^{*}, 10 \mathrm{~A} . . .32 \mathrm{~A}$ range	(1)	$0.02+0.06$	$0.015+0.03$	$0.01+0.02$	$0.10+0.20$
Current I_{HF}	$0.02+0.06$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	$0.3+0.6$
Current $\mathrm{I}_{\text {Sensor }}$	$0.02+0.06$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	$0.2+0.4$
Active power $\mathrm{U}^{*} / \mathrm{I}^{*}(20 \mathrm{~mA} . .5 \mathrm{~A})$	$0.032+0.06$	$0.028+0.03$	$0.015+0.01$	$0.048+0.06$	$0.24+0.3$
Active power $\mathrm{U}^{*} / I^{*}(10 \mathrm{~A} . .32 \mathrm{~A})$	$0.032+0.06$	$0.028+0.03$	$0.015+0.01$	$0.104+0.13$	$0.32+0.4$
Active power $\mathrm{U}^{*} / \mathrm{I}_{\mathrm{HF}}$	$0.032+0.06$	$0.028+0.03$	$0.015+0.01$	$0.048+0.06$	$0.24+0.3$
Active power $\mathrm{U}^{*} / \mathrm{I}_{\text {Sensor }}$	$0.032+0.06$	$0.028+0.03$	$0.015+0.01$	$0.048+0.06$	$0.24+0.3$
Active power $\mathrm{U}_{\text {Sensor }} / \mathrm{I}^{*}(20 \mathrm{~mA} . .5 \mathrm{~A})$	$0.032+0.06$	$0.024+0.03$	$0.015+0.01$	$0.048+0.06$	$0.32+0.4$
Active power $\mathrm{U}_{\text {Sensor }} / I^{*}(10 \mathrm{A..32A)}$	$0.032+0.06$	$0.024+0.03$	$0.015+0.01$	$0.104+0.13$	$0.4+0.5$
Active power $\mathrm{U}_{\text {Sensor }} / \mathrm{I}_{\mathrm{HF}}$	$0.032+0.06$	$0.024+0.03$	$0.015+0.01$	$0.048+0.06$	$0.32+0.4$
Active power $\mathrm{U}_{\text {Sensor }} / \mathrm{I}_{\text {Sensor }}$	$0.032+0.06$	$0.024+0.03$	$0.015+0.01$	$0.048+0.06$	$0.32+0.4$

Frequency/Hz	$100 \mathrm{kHz} . .500 \mathrm{kHz}$	$\begin{gathered} 500 \mathrm{kHz} . . \\ 1 \mathrm{MHz} \end{gathered}$	$1 \mathrm{MHz} . .3 \mathrm{MHz}$	$3 \mathrm{MHz} . .10 \mathrm{MHz}$
Voltage U*	$0.5+1.0$	$0.5+1.0$	3+3	$\mathrm{f} / 1 \mathrm{MHz}^{*} 1.2+\mathrm{f} / \mathrm{MHHz*}{ }^{\text {c }}$. 2
Voltage $\mathrm{U}_{\text {Sensor }}$	$0.4+0.8$	$0.4+0.8$	f/l $1 \mathrm{MHz}^{*} 0.7+\mathrm{f} / 1 \mathrm{MHz} z^{*} .5$	f/ $/ \mathrm{MHz}^{*} 0.7+\mathrm{f} / \mathrm{MHz}{ }^{*} 1.5$
Current I*, 20mA...5A range	$0.5+1.0$	0.5+1.0	$\mathrm{f} / \mathrm{MHz}^{*} 1+\mathrm{f} / 1 \mathrm{MHz}^{*} 2$	-
Current I*, 10A...32A range (1)	$\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 0.8+\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 1.2$	-	-	-
Current I_{HF}	$0.5+1.0$	0.5+1.0	$\mathrm{f} / \mathrm{MHz}{ }^{*} 1+\mathrm{f} / 1 \mathrm{MHz}^{*} 2$	-
Current $\mathrm{I}_{\text {Sensor }}$	$0.4+0.8$	0.4+0.8	f/l $\mathrm{MHz}^{*} 0.7+\mathrm{f} / 1 \mathrm{MHz}^{*} 1.5$	f/1MHz*0.7 + f/l $\mathrm{MHz}^{*} 1.5$
Active power U*/I* (20mA..5A)	$0.8+1.0$	$0.8+1.0$	f/l $\mathrm{MHz*} 3.2+\mathrm{f} / 1 \mathrm{MHz}{ }^{\text {\% }}$. 5	-
Active power U*/I* (10A..32A)	$\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 1+\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 1.1$	-	-	-
Active power $\mathrm{U}^{*} / \mathrm{I}_{\mathrm{HF}}$	$0.8+1.0$	$0.8+1.0$	$\mathrm{f} / 1 \mathrm{MHz*} 3.2+\mathrm{f} / 1 \mathrm{MHz} * * .5$	-
Active power $\mathrm{U}^{*} / \mathrm{I}_{\text {Sensor }}$	$0.72+0.9$	0.72+0.9	f/1MHz*3+ f/lMHz*2.3	f/l $\mathrm{MHz}^{*} 1.5+\mathrm{f} / \mathrm{MMHz*} 1.4$
Active power $\mathrm{U}_{\text {Sensor }} / I^{*}(20 \mathrm{~mA} . .5 \mathrm{~A})$	0.72+0.9	$0.72+0.9$	f/l $\mathrm{MHz}^{*} 1.4+\mathrm{f} / 1 \mathrm{MHz} z^{*} 1.8$	-
Active power $\mathrm{U}_{\text {Sensor }} / \mathrm{I}^{*}(10 \mathrm{~A} . .32 \mathrm{~A})$	f/100kHz*1 + f/100kHz*1	-	-	-
Active power $\mathrm{U}_{\text {Sensor }} / \mathrm{I}_{\mathrm{HF}}$	$0.72+0.9$	$0.72+0.9$	f/l $\mathrm{MHz}^{*} 1.4+\mathrm{f} / \mathrm{MHz}{ }^{\text {*2 }}$	-
Active power $\mathrm{U}_{\text {Sensor }} / \mathrm{I}_{\text {Sensor }}$	0.64+0.8	0.64+0.8	f/l $1 \mathrm{MHz*}{ }^{*} .12+\mathrm{f} / 1 \mathrm{MHz}{ }^{\text {\% }} 1.5$	f/l $\mathrm{MHz}^{*} 1.12+\mathrm{f} / \mathrm{MMHz}{ }^{\text {\% }} 1.5$

(1) additional uncertainty $\pm I^{2} \frac{30 \mu A}{A^{2}}$

Uncertainties based on:

1. sinusoidal voltages and currents
2. ambient temperature $(23 \pm 3)^{\circ} \mathrm{C}$, no additional heating or cooling (i.e. by sunlight or current of air)
3. warm up time 1 h
4. power range is the product of current and voltage range, $0 \leq|\lambda| \leq 1$
5. Voltage and current are $\geq 10 \%$ and $\leq 110 \%$ of rated range
6. calibration interval 1 year
7. Adjustment was done at $23^{\circ} \mathrm{C}$.

Temperature effect: 0.01% of measuring value / K

Uncertainty at standby power

In the EC directive 2005/32/EC as well as in IEC/EN 62301 you can find requirements concerning the power measuring uncertainty. A well adjusted and calibrated LMG500 combined with a well adjusted and calibrated shunt will fullfill the instrument uncertainty of 2% for power $\geq 0.5 \mathrm{~W}$ or 0.01 W for power $<0.5 \mathrm{~W}$. The level of confidence is at least 95%. A well fitting shunt type, usual measuring conditions and signals are assumed.

12.3.4 Common mode rejection

The common mode rejection was measured with a sinusoidal voltage of 100 V against PE. For the voltages ranges the signal was fed into the short circuit U and U^{*} resp. U and $U_{\text {sensor }}$. For the current channel the signal was fed into I resp. I and $\mathrm{I}_{\text {sensor }}$ (short circuit).

Common mode frequency	10 kHz Filter	U 3 V range	$\mathrm{U}_{\text {sensor }}$ 4 V range	I^{*}	32 A range	I_{HF}
0.15 A range		$\mathrm{I}_{\text {sensor }}$				
4 A range						

12.4 ZES sensors

Most ZES sensors have an EEPROM implemented in which we have stored the name, scaling, ranges, adjustment and delay time of the sensor. The LMG500 recognises automatically, which ZES sensor is connected and sets up the range menu. Further on we correct some of the errors the sensor produces (transfer error, delay time, ...). So you get the best measuring results with each sensor.

Due to the EEPROM this sensors offer a plug \& play solution for your measuring. The usage of the LMG sensor input offers several measuring ranges which increase the dynamic of the connected sensors.

There is a very wide range of sensors available:

- Current clamps, transformers, hall sensors, flux compensated types, flexible Rogowski sensors, shunts, ...
- Uncertainties up to $<0.01 \%$
- Frequency range from DC to several hundred kHz
- Current range from $\ll 1 \mathrm{~A}$ up to several kA

For the exact specifications of all this sensors you find a detailed manual on the CD which is delivered together with this manual. If this CD is missing or you have this manual only as PDF file you can request it via email from ‘sales@zes.com’.

To adapt this sensors to a LMG500 you need a special adaptor, L50-Z14:

Figure 43: L50-Z14 adaptor
The sensor is connectet to the 15 pin jack. With the other side the adaptor is connected to the LMG500. The two long pins are placed into the $U_{\text {sensor }} / U$ resp. $I_{\text {sensor }} / I$ jacks, the 9pin SUB-D connector to the proper sensor ID jack and locked with the two knurled screws.

12.4.1 Several external sensors in a test bench

A common situation in test benches is, that different sensors have to be connected, controlled by a program. In this case the relevant signals have to be redirected, e.g. by a relais. Relevant are all 10 signals of the pins 6 to 15 of the 15 pin jack in the L50-Z14!

Important!

First you have to disconnect an existing sensor.
Secondly you have to wait for at least 3s.
Now you can connect the new sensor.

12.5 Filter

12.5.1 10kHz filter

This analogue filter has the following characteristic:

Frequency / Hz	Rejection / dB
10	0.0019
20	0.0005
50	0
100	-0.0004
200	-0.0014
500	-0.0086
1000	-0.0319
2000	-0.1459

Frequency / Hz	Rejection / dB
5000	-0.8350
10000	-3.16
20000	-14.45
50000	-49.45

12.6 CE Harmonics

Relative deviation between f_{1} and frequency $f_{\text {syn }}$, to which the sampling rate is synchronised is $<0.015 \%$ of f_{1} under steady-state conditions.

This instrument is a class I instrument according EN61000-4-7.

Uncertainty

According EN61000-4-7 Ed. 2.0:

$$
\begin{array}{lll}
\mathrm{U}: & \mathrm{U}_{\mathrm{m}} \geq 1 \% \mathrm{U}_{\mathrm{nom}}: & \pm 5 \% \mathrm{U}_{\mathrm{m}} \\
& \mathrm{U}_{\mathrm{m}}<1 \% \mathrm{U}_{\text {nom }}: & \pm 0.05 \% \mathrm{U}_{\text {nom }}
\end{array}
$$

I: $\quad \mathrm{I}_{\mathrm{m}} \geq 3 \% \mathrm{I}_{\text {nom }}: \quad \pm 5 \% \mathrm{I}_{\mathrm{m}}$
$\mathrm{I}_{\mathrm{m}}<3 \% \mathrm{I}_{\text {nom }}: \quad \pm 0.15 \% \mathrm{I}_{\text {nom }}$
With
$\mathrm{m}=$ measuring value
$\mathrm{nom}=$ nominal value of the range

Please note

The influence of the HF-Rejection filter is compensated for the amplitudes of the harmonics. The values for U, I and P are not recalculated from the harmonics, but are calculated from the sampling values to get for example interharmonics and components with higher frequencies which are not captured by the harmonics. So it is not possible to compensate the influence of the filters for this values! For the same reason this values can also be much bigger than the values which can be derived from the harmonics (depending on the signal).

12.7 CE Flicker

According to EN61000-4-15:2011 resp. IEC61000-4-15:2010 this is a class F1 flickermeter.

Uncertainty

Flickermeter: $\pm 5 \%$ acording to EN61000-4-15, $0.3<\mathrm{k}<5.4$
d-meter: $\pm 0.15 \%$ of nominal voltage according to EN61000-3-3

12.8 HARM100 Mode

Amplitude uncertainty

The uncertainty of the harmonic with the biggest amount $\mathrm{H}_{\max }$ (usually the fundamental) and of the DC part $\left(\mathrm{H}_{00}\right)$ is calculated as if each part is measured alone (refer uncertainty specifications of the normal measuring mode).

The uncertainties of the harmonics $\left(\mathrm{H}_{01}, \mathrm{H}_{02}, \ldots\right)$ except $\mathrm{H}_{\text {max }}$ is calculated as follows:
$\pm\left(0.5\right.$ uncertainty $_{\mathrm{H} \max }+0.02 \%$ of $\left.\mathrm{H}_{\max } / \mathrm{kHz}\right)$
This uncertainties are valid if the amplitude of the harmonics are higher than 0.1% of the full scale peak value.

Example: You have a typical spectrum with the biggest harmonic being the 60 Hz fundamental with 1 A . You have a $11^{\text {th }}$ harmonic with 0.1 A . This spectrum is measured in the 1.2 A range. The uncertainty of the fundamental is 0.01% of $1 \mathrm{~A}+0.02 \%$ of $3.75 \mathrm{~A}=0.85 \mathrm{~mA}$.

For the $11^{\text {th }}$ harmonic you have to calculate the uncertainty liek this: $0.5 * 0.85 \mathrm{~mA}+0.02 \%$ of $1 \mathrm{~A} * 0.66=0.557 \mathrm{~mA}$.

The 0.66 are $11 * 60 \mathrm{~Hz}=660 \mathrm{~Hz}$ relative to 1 kHz .

Phase uncertainty
$\pm\left(0.15^{\circ}+0.25^{\circ} / \mathrm{kHz}\right)$
This uncertainty is valid if the amplitude of the harmonics are higher than 0.1% of the full scale peak value.

12.9 Processing signal interface (option L50-O3)

The 8 functional groups are isolated against each other (for details please refer 13.6, 'Functional block diagram processing signal interface'). The allowed working voltage is 25 V between the groups. The testing voltage is 500 V .

The analogue inputs and outputs have nominal $\pm 10 \mathrm{~V}$ signal range, but in fact they are able to handle $\pm 20 \mathrm{~V}$ resp. $\pm 11 \mathrm{~V}$.

The processing signal interface has two connectors (Analogue/Digital I/O A and B) with the following inputs and outputs. Each connector is compatible to LMG95 and LMG450.

- 8 analogue outputs with $\pm 10 \mathrm{~V}$. The outputs are updated with each measuring cycle for normal values. All analogue outputs have one common ground (AOut_GND) which is isolated from all other grounds.
- 8 analogue inputs with $\pm 20 \mathrm{~V}$. This values are displayed after each measuring cycle. All analogue inputs have one common ground (AIn_GND) which is isolated from all other grounds.
- 4 digital outputs A (open collector outputs). They are updated with each measuring cycle. They have one common ground (DOut_GND_A) which is isolated from all other grounds.
- 4 digital outputs B (open collector outputs). They are updated with each measuring cycle. They have one common ground (DOut_GND_B) which is isolated from all other grounds.
- 4 digital inputs A. They have one common ground (DIn_GND_A) which is isolated from all other grounds.
- 4 digital inputs B. They have one common ground (DIn_GND_B) which is isolated from all other grounds.
- 1 frequency input A with sensor supply. It can measure frequency and direction of a rotation speed converter. This frequency input and it's supply have a common ground (Aux_F_GND_A) which is isolated from all other grounds. Via FIn_5 you can apply the frequency, FIn_6 gives the direction information. If not used as a frequency input, the state of FIn_5 and FIn_6 are displayed like a usual digital input.
- 1 frequency input B with sensor supply. It can measure frequency and direction of a rotation speed converter. This frequency input and it's supply have a common ground (Aux_F_GND_B) which is isolated from all other grounds. Via FIn_11 you can apply the frequency, FIn_12 gives the direction information. If not used as a frequency input, the state of FIn_11 and FIn_12 are displayed like a usual digital input.

The connectors have the following pinout:

Figure 44: Processing Signal Interface Connector A and B
For information how to setup this values see 4.4.2.2, 'Processing signal interface'

12.9.1 Analogue inputs

Pins:	AIn_1 to AIn_8 with AIn_GND
Resolution:	24 Bit
Uncertainty:	$\pm(0.05 \%$ of measuring value $+0.05 \%$ of full scale $)$
Input signal:	$\pm 20 \mathrm{~V}$
Overload capability:	$-30 \ldots+30 \mathrm{~V}$
Input resistance:	$100 \mathrm{k} \Omega \pm 0.1 \%$

12.9.2 Analogue outputs

Pins	AOut_1 to AOut_8 with AOut_GND
Resolution:	14 Bit
Uncertainty:	$\pm(0.05 \%$ of output value $+0.05 \%$ of full scale value $)$
Output signal:	$\pm 11 \mathrm{~V}$
Output load:	$<10 \mathrm{~mA}$
Impedance:	$<1 \Omega$

12.9.3 Digital outputs A

They are open collector outputs (see 13.6, 'Functional block diagram processing signal interface').

Pins: DOut_1 to DOut_4 with DOut_GND_A
Output high impedance: $\quad \max 60 \mathrm{~V} @ 100 \mu \mathrm{~A}$
Output low impedance: max. $0.9 \mathrm{~V} @ 100 \mathrm{~mA}$
Reverse polarity:
max.-1V@-100mA

12.9.4 Digital outputs B

They are open collector outputs (see 13.6, 'Functional block diagram processing signal interface').

Pins:
DOut_5 to DOut_8 with DOut_GND_B

Output high impedance: $\max 60 \mathrm{~V} @ 100 \mu \mathrm{~A}$
Output low impedance: max. $0.9 \mathrm{~V} @ 100 \mathrm{~mA}$
Reverse polarity: max.-1V@-100mA

12.9.5 Digital inputs A

Pins: DIn_1 to DIn_4 with DIn_GND_A
Input signal: $\quad \mathrm{U}_{\text {low }} \min =-60 \mathrm{~V} @ 0.001 \mathrm{~mA}, \mathrm{U}_{\text {low }} \max =1.3 \mathrm{~V} @ 0.03 \mathrm{~mA}$
$\mathrm{U}_{\text {high }} \min =3 \mathrm{~V} @ 1 \mathrm{~mA}, \mathrm{U}_{\text {high }} \max =60 \mathrm{~V} @ 1.5 \mathrm{~mA}$

12.9.6 Digital inputs B

Pins: DIn_7 to DIn_10 with DIn_GND_B
Input signal: $\quad \mathrm{U}_{\text {low }} \mathrm{min}=-60 \mathrm{~V} @ 0.001 \mathrm{~mA}, \mathrm{U}_{\text {low }} \mathrm{max}=1.3 \mathrm{~V} @ 0.03 \mathrm{~mA}$
$\mathrm{U}_{\text {high }} \min =3 \mathrm{~V} @ 1 \mathrm{~mA}, \mathrm{U}_{\text {high }} \mathrm{max}=60 \mathrm{~V} @ 1.5 \mathrm{~mA}$

12.9.7 Frequency input A with sensor supply

Pins:	Frequncy input FIn_5 Direction input FIn_6 +5 V supply Aux+5V_A -5 V supply Aux-5V_A Ground Aux_F_GND_A
Input signal:	$\mathrm{U}_{\text {low }} \mathrm{min}=-30 \mathrm{~V} @-3 \mathrm{~mA}, \mathrm{U}_{\text {low }} \mathrm{max}=0.6 \mathrm{~V} @ 0.001 \mathrm{~mA}$, $\mathrm{U}_{\text {high }} \mathrm{min}=2 \mathrm{~V} @ 0.002 \mathrm{~mA}, \mathrm{U}_{\text {high }} \mathrm{max}=30 \mathrm{~V} @ 2.5 \mathrm{~mA}$
Input resistance:	$1 \mathrm{M} \Omega @ 0 \mathrm{~V}<\mathrm{Uin}<5 \mathrm{~V}$ $10 \mathrm{k} \Omega @-30 \mathrm{~V}<\mathrm{Uin}<30 \mathrm{~V}$
Frequency range:	0.05 Hz (depending and cycle time) to 6 MHz
Uncertainty:	$\pm 100 \mathrm{ppm}$ of reading
Auxiliary supply:	$\pm 5 \mathrm{~V}, 10 \% @ 100 \mathrm{~mA}$

12.9.8 Frequency input B with sensor supply

Pins:
Frequncy input FIn_11
Direction input FIn_12

	$+5 \mathrm{~V} \text { supply } \mathrm{Aux}+5 \mathrm{~V} _\mathrm{B}$
	-5V supply Aux-5V_B
	Ground Aux_F_GND_B
Input signal:	$\begin{aligned} & \mathrm{U}_{\text {low }} \min =-30 \mathrm{~V} @-3 \mathrm{~mA}, \mathrm{U}_{\text {low }} \max =0.6 \mathrm{~V} @ 0.001 \mathrm{~mA}, \\ & \mathrm{U}_{\text {high }} \min =2 \mathrm{~V} @ 0.002 \mathrm{~mA}, \mathrm{U}_{\text {high }} \max =30 \mathrm{~V} @ 2.5 \mathrm{~mA} \end{aligned}$
Input resistance:	$1 \mathrm{M} \Omega @ 0 \mathrm{~V}<\mathrm{Uin}<5 \mathrm{~V}$
	$10 \mathrm{k} \Omega$ @ - $30 \mathrm{~V}<$ Uin<30V
Frequency range:	0.05 Hz (depending and cycle time) to 6 MHz
Uncertainty:	$\pm 100 \mathrm{ppm}$ of reading
Auxiliary supply:	$\pm 5 \mathrm{~V}, 10 \%$ @ 100mA

12.9.9 Sensor supply

The functional group 'frequency input with sensor supply' can be connected directly to usual incremental sensors:

HTL version

(Supply 8...30V, max. 100mA, differential output):
Aux+5V to: +Ub
Aux-5V to: 0V
Shield of Sub-D to: Shield of cable

TTL version

(Supply 5V, max. 100mA, TTL output):
Aux +5 V to: $\quad+\mathrm{Ub}$
Aux_F_GND to: 0V
Shield of Sub-D to: Shield of cable

12.9.10 Frequency/direction input

Incremental sensors without direction information

Connect them to FIn_5 resp. FIn_11 only. Let FIn_6 resp. FIn_12 open!

Incremental sensors with direction information

Connect the frequency track (usually track A) to FIn_5 resp. FIn_11.

Connect the direction track (usually track B) to FIn_6 resp. FIn_12.
A positive frequency is displayed, if the direction signal is high at the rising edge of the frequency signal.

A negative frequency is displayed, if the direction signal is low at the rising edge of the frequency signal.

If this is opposite to what you want, change the tracks or use a negative frequency scaling.

12.10 Timebase

The timebase which controls the energy measuring and the internal clock has an uncertainty of $\pm 100 \mathrm{ppm}$

12.11 Frequency measuring

$0.05 \mathrm{~Hz} . . .3 \mathrm{MHz}, \pm 100 \mathrm{ppm}$

12.12 Scope memory

Size: 1048576 words for u, 1048576 words for i , 1048576 words for p , together for all channels of one instrument resp. one master or one slave.

13 System design

13.1 Further connectors

13.1.1 External Synchronisation (Sync.)

13.1.1.1 Sync. connector

Figure 45: Sync. connector

13.1.1.2 Pin configuration of the "Sync. connector"

For the connection a 15 pole D-Sub plug with the following pin configuration is necessary:

Pin	Meaning	Pin	Meaning
1	Cycle out	9	Control out
2	Frequency out	10	Trigger out
3	Ground	11	Ground
4	Do not connect!	12	$+5 \mathrm{~V} / 100 \mathrm{~mA}$
5	Do not connect!	13	Ground
6	Ground	14	Control in
7	Cycle in	15	Trigger in
8	Frequency in		

13.1.1.3 Signal Level

All in- and outputs have CMOS - Drivers with 5V level. The supply of external sensors / drivers is provided at pin 12 with 5 V and an Imax of 100 mA . All in - and outputs are low active $(0 \mathrm{~V})$, what means the idle level is high $(+5 \mathrm{~V})$.

13.1.1.4 Function of the signals

Frequency in

Maximum 100 kHz frequency synchronous to the frequency of the measured signal. If the LMG is set to Ext. Sync. this frequency is used for synchronisation. The rising edge of this signal replaces the positive zero crossing of the usual sync detector.

Frequency out

Measured frequency of group A, depending on the synchronisation source of the group.

Control in

Control of the energy measurement. With the next high low transition the integration is reset (if summing mode is inactive) and started. The integration stops only at transitions from low to high. The functionality of the transitions:

$$
\begin{array}{llll}
\text { high } & \rightarrow & \text { low } & \text { start key } \\
\text { low } & \rightarrow & \text { high } & \text { stop key }
\end{array}
$$

Control out

Status of the energy measurement high level if the integration is stopped, low level if the integration is running.

Cycle in

Control of the measurement cycle. The period must be longer than 50 ms and shorter than 60 seconds and longer than the period of the measured signal. The pulse duty factor can be 50%. Example: To measure a 5 Hz signal the measurement cycle must be bigger than 200 ms . Attention: Use only with valid control periods otherwise there can be a system fault of the meters. This input is normally not used.

The rising edge of this signal finishes one cycle and starts a new one.

Cycle out

Pulse for about 10μ s per measurement cycle.

Trigger in/out

not used.

13.1.1.5 Synchronised measurements of two LMG500

Following a possibility is described, how two LMG500 can perform synchronized measurements. Please don't mix up this posibility with the combining of two LMG500 to a real 8 channel instrument. For a real 8 channel instrument you need a connection cable L50-Z13 and have to bring one instrument into the slave mode (see chapter 4.4.1, 'Misc.' and chapter 3.4, 'Coupling of two LMG500 (L50-Z13) for a 8 channel instrument').

13.1.1.5.1 General

Two LMG500 (or also LMG450) may measure synchronous if they are connected with the option L45-Z13 „Master-Slave cable". Because of this the measurement of even 8 phases in four groups is possible. In the following documentation the groups are named: group A1 and B1 are the groups of the first LMG500. Group A2 and B2 are the groups of the second meter.

13.1.1.5.2 Connection of the meters

The Master-Slave cable must be fitted to the „Sync"-sockets of both meters. The cable is symmetric, so there is no wiring direction.

13.1.1.5.3 Pin configuration of the Master-Slave cable L45-Z13:

Plug 1	Plug 2	Signal	ST1	ST2
1	7	Cycle	Out	In
2	8	Frequency	Out	In
9	14	Control	Out	In
10	15	Trigger	Out	In
7	1	Cycle	In	Out
8	2	Frequency	In	Out
14	9	Control	In	Out
15	10	Trigger	In	Out

Ground and Screen are connected to pin 3 of both plugs.

Synchronisation stages, Set-up of the Meters

The synchronisation of the measurement can be done in different stages. Each stage is independent to all others.

A) Synchronisation of the measurement signal

This stage has no master-slave functionality. The inputs „Frequency in" are connected with the synchronisation frequency of group A of the other power meter. The adjustments of this parameter can be set separately for each group in every meter in the Measure menu with Sync.

Because of this all groups can synchronise the measuring of one common signal.
Example for the settings:
Group A1 of the first meter is set to U1.
Group A2 of the second meter is set to Ext., by this the synchronisation is set to U1 of the first meter.
Group B1 is set to Ext., by this it gets the synchronisation frequency via A2 what means U1.
Group B2 is set to Ext., by this it gets the synchronisation frequency of A1 what means U1.
If the groups A of both meters are set to Ext. there is no common synchronisation frequency and the measuring is asynchronous.

B) Synchronisation of the measuring cycle

This stage has a master-slave functionality!
For a simultaneous generation of the measuring values of two LMG the measuring cycle of the meters has to be exactly the same. Therefore the cycle time of the slave meter can be set to 0ms in the Measure (refer 5.1.1 Globals tab) menu.
In the status bar „0 Ext" is shown and the green bar flashes every second.
The measuring values of both meters are now generated at exactly the same moment and a comparison of the values is possible.
Because of the master-slave meaning this adjustment can only be set in one meter. If both meters are set to 0 ms the measurement stops!

C) Synchronisation of the energy measurement

This stage has no master-slave functionality but a control of a master LMG is recommended (if existing from the last top).
The energy measurement of both meters has to be set to the same mode and should be reset (refer 5.4.5.1 Integration menu).
The measurement can be started and stopped mutual with the keys „Start" and „Stop". A remote controlled measurement is also possible (see the following section)

D) External synchronisation signal

If the measurement should be synchronised to an additional external signal, this signal has to be connected to the pins of the D-Sub plug. The plug fitted to the meter which should be synchronised external has to be opened and the „Freq" and „Control" inputs must be disconnected. After this the external signal can be connected to this inputs.
If the signals are connected to the master LMG also the slave LMG can use them, because the master outputs are still connected to slave inputs:
Pin 8 Input for the external synchronisation frequency
Pin 7 Input for the cycle

Pin 14 Input for the control signal for energy metering
The connections at this pins of the master plug can be unsoldered and own signals can be connected.
Ground should be connected to Pin 6,11 or 13 .

13.2 Functional block diagram LMG500

Figure 46: Functional block diagram LMG500

13.3 Functional block diagram voltage channels

Figure 47: Functional block diagram voltage channels

13.4 Functional block diagram current channels

Figure 48: Functional block diagram current channels

13.5 Functional block diagram computing unit

Figure 49: Functional block diagram computing unit

13.6 Functional block diagram processing signal interface

Figure 50: Functional block diagram processing signal interface

14 Glossary

Catchword	Meaning
100 Harmonics	Mode in which 99 harmonics of U, I and P are calculated.
A	
AAF	\Rightarrow Anti Aliasing Filter.
AC	Alternating current; instantaneous values of voltage and current are time depending signals which have positive and negative values.
AC coupling	Used to remove the DC parts of a signal by using a high pass filter.
AC+DC coupling	Couples the complete signal without rejecting any parts.
Active energy	Energy which is consumpted by the (usually ohmic) load.
Active power	Power which is consumpted in the (usually ohmic) load.
Actual flicker level Pmom	\Rightarrow Instantaneous flicker level.
Aliasing	Distortion caused by signal parts, which are created through the violation of the sampling (Nyquist, Shannon) theorem (bandwidth $\geq 1 / 2$ sampling frequency). This can be prevented by using \Rightarrow Anti Aliasing Filter.
Allowed limits	Limits which are declared in standards.
AM	Amplitude modulation; one signal is multiplied with another one; A typical example is a rapid fire control, where a 50 Hz sine wave is modulated with a slower rectangular signal.
Amplitude error	Error in the modulus of a measuring result.
Amplitude modulation	\Rightarrow AM.
Analogue I/O	Analogue input and output, the LMG series supplies four separated inputs and outputs for analogue signals: $0-10 \mathrm{~V}$.
Analogue Input	\Rightarrow Analogue I/O.
Analogue Output	\Rightarrow Analogue I/O.
AND Condition Register	Register in which a flag is set, if two conditions are true.
Anti-Aliasing-Filter	Filter which cuts off signal parts which might produce aliasing.
Apparent energy	Energy which seems to be consumpted by the load; \Rightarrow Apparent power. It is the integration of the apparent power.
Apparent power	Power which seems to be consumpted; it is calculated by $\mathrm{U}_{\text {TRMS }} * \mathrm{I}_{\text {TRMS }}$ without taking care on the phase angle between them.

Catchword	Meaning
Application note	Several measuring or wiring problems are described in application notes of ZES ZIMMER; available also at the ZES homepage: www.zes.com.
Arbitrary block response data	\Rightarrow Defined length arbitrary block response data.
ASCII format	Format which bases on the American standard code of information interchange with 128 symbols.
Autorange	Function which changes the ranges of the current and voltage inputs automatically, depending on the signal.
Auxiliary transducer supply	Some transducers need a separate supply. The LMG can provide this supply.
Averaged values	This values are averaged over a constant number of measuring cycles.
B	Frequency range from the lowest to the highest frequency, which can be measured or used.
Bandwidth	Display of the values symbolised by bars; A typical bargraph is the spectrum display.
Bargraph	The signal part with the lowest frequency in the signal (except DC part).
Basic wave	Transfer speed of the bits in a serial data stream.
CE-Flicker harmonics	Numerical system based only on to values: 0 and 1, the data is represented only by this two binary values.
Binary	Format of drawing or photos.
Citmap	Total load of a current transducer including wiring and input resistance.
Burden	Harmonics measured according to EN61000-3-2; this test is requested for the CE sign. requested for the CE sign.
Calibration according to ISO9000	Testing of the meter uncertainty traceable to national or international standards.
CAT III	Each channel has a capacitance against the earth ; this can cause systematically measuring errors which can be corrected.
Overvoltage class for usage in normal building test earth is	
Cats.	

Catchword	Meaning
Channel	Hardware which acts as an interface between the test circuit and the instrument, these are U, I and P channels (P=U*I).
Charge	The integration of the current over the time; this charge can be stored for example in an accumulator the unit is Ah.
Class A, B, C, D	Different kinds of equipment under test for EN61000-3-2 tests are assigned to this test classes.
COM interfaces	Serial Interface, mostly 9 pole SUB-D socket or 25 pole SUB-D socket.
Comma separated	Data format in which each value is separated by a ','.
Command set	A couple of commands to remote control the instrument
Common mode rejection	Relation of the displayed value to a common floating signal on all inputs of a measuring channel; a high common mode rejection is necessary for good uncertainty.
Condition instruction	Instruction which will only be executed if a condition has been fulfilled.
Constant	Value which will not change over time.
Continuous measuring	Measuring without any gaps.
Core parameter measuring circuit	The core parameters, like hysteresis and magnetic flux, can be determined through power measuring.
Correct current	You can only measure one of these parameters in the correct way, because the impedance of the voltage / current channel has an influence on the measuring channel. This is a systematically measuring error, which can be corrected.
Correct voltage measuring	'Device under test': equipment which should be measured. Chis defines which parts of a signal are fed into the next stage. \Rightarrow AC coupling.
Current clamp	Ratio of peak value to TRMS value; very important when using analogue instruments.
Current transducer	Tool to measure currents; work like a removable transformer.
Cursor	Similar to current clamps, but placed unremovable in the the period time of the basic wave.
measurement circuit.	

Catchword	Meaning
Data output format	Format which is used to transfer data from the meter to a PC or data logger.
DC value	'Direct current'; signal without alternating components. This signal is constant over the time.
Default parameters	Parameters defined by the manufacturer; the instrument is set to this parameters when it leaves the factory.
Defined length arbitrary block response data	Data transfer in blocks with a defined length and random contents inside the blocks; there can be for example the \Rightarrow EOS character which will be interpreted as data instead of EOS. The fastest way to get data.
Demodulation	Inverse function to \Rightarrow modulation; remove the carrier and you get the signal you want.
Desired integration time	Time in which the power is integrated, set by the user.
Device	Every meter or equipment take place in the measurement (Printer, PC ...).
Device under test	\Rightarrow D. U. T.
DFT algorithm	Discrete Fourier transformation; operation with discrete values using the Fourier integral to get the harmonics of a signal.
Edit line	Filter built up with digital components and software.
Efficiency measurement	Like \Rightarrow Analogue inputs the LMG series provides digital inputs, to read external states.
Digital Input	Like \Rightarrow Analogue outputs the LMG series provides digital outputs, which can be used to signalise states (e.g. alarm outputs).
Digital Output	Small hardware switches to set up a meter parameter, like communication speed.
Direction input	Input for motor testing to measure the rotary direction of the motor.
Efficiency is the relation between the output power and the	
input power of an E. U. T.	
instrument.	

Catchword	Meaning
EN61000-3-2, EN61000-4-7	Standards which describe the harmonic measuring
EN61000-3-3, EN61000-4-15	Standards which describe the flicker measuring.
End of string character	'<lf>', '<cr>, <cr><lf>' are examples for EOS characters.
Energy	Integration of the power which is consumpted by a consumer or a device in a defined time.
envelope	It is the curve which covers a mixed frequency signal connecting the peak values of the fast frequency; a curve defined by EN61000-3-2 to define if a device belongs to Class D or not.
EOS	\Rightarrow End of string.
Equipment under test	\Rightarrow D. U. T.
ESC key	Key used to cancel an entering mode and to quit an error message.
Extended Trigger	Mode in which the trigger conditions can be set up very differentiated to measure even modulated signal.
External current transformer	Device to transform high currents to lower ones.
External shunt	Changes currents into voltage with defined ratio.
External synchronisation jack	Input for an external synchronisation source.
F	
Falling edge	Opposite of rising edge; the logic signal turns from the high potential to the lower one.
FIFO	First in first out; method how the in- and output of memory is handled.
Filter	Device which cuts off frequencies which are not useful; e.g. high pass filter cuts off low frequencies.
Flicker meter	Device to measure flicker levels.
Fluctuating harmonics	Harmonics not constant over time.
Form factor	Ratio of TRMS value to rectified value; older meters could only measure the rectified value and multiply it with the form factor to get the TRMS value. The problem is, that the form factor depends on the wave form. So with other wave form you get an error. Modern instruments like the LMGs measure independent to the form factor, so you measure always correct.
Formula editor	Here you can set up formulas which will calculate different parameters from the measured values.
Freeze	The display values are not updated any more.
Frequency	Speed in which the period of an alternating signal repeats.

Catchword	Meaning
Frequency divider	Changes a high frequency into lower frequency by division with an integer number.
Frequency domain view	The signal is shown as spectrum over the frequency.
Frequency range	\Rightarrow Bandwidth.
Full scale value	Highest measurable instantaneous value in the chosen range.
Fundamental	\Rightarrow Basic wave.
G	
GPIB interface	General Purpose Interface Bus socket to transfer data from meter to PC and opposite.
Graphical display	Representation of the measured values via time or frequency.
H	
Half wave value	Values measured over the half time of the signals period.
Harm100	$\Rightarrow 100$ Harmonics.
Harmonic analyser	Device to measure harmonics.
Harmonic order	Describes which order the harmonic has; e.g. of a 50 Hz signal the order of the 100 Hz harmonic is 2 , its the second harmonic.
High impedance state	The digital output has a high impedance; the transistor is in blocking mode.
Hyperterminal	Software to exchange data between a PC and a device; included in Microsoft Windows.
Hysteresis	Difference between the switching level of the rising signal to the switching level of the falling signal.
\|	
I/C indication	Indication if the load is inductive or capacitive.
Identifier	Text string representing a measuring value.
IEC61000-3-2, 2-3	\Rightarrow EN61000-3-2.
IEC61000-4-7, -4-15	\Rightarrow EN61000.
IEEE488.2 interface	\Rightarrow GPIB interface.
IF/IO	Key for the set - up menus of interface and processing signal interface.
Inaccuracy of display	Because of the limited numbers on the display the displayed values have an error caused by the display (this is always ± 1 digit).
InCa flag	Flag which is set depending if the load is inductive or capacitive.

Catchword	Meaning
Input resistance Ri	Resistance of the input of the measuring channel.
Inrush current	Very high current at the start of a device or appliance; this can be 5 ... 100 times bigger than the current at normal operation.
Instantaneous flicker level	Time-dependent output signal of a flickermeter (output 5), which simulates an actual reaction of men's brain to the variations of light brightness caused by fluctuation of the supply voltage.
Instantaneous value	The value of a signal at one point of time.
Int. Time	Interval time; for example for integration.
Int. Value	Interval value; they are measured while the \Rightarrow Int. Time.
Integer number	Number without decimal position.
Integration mode	Mode in which the energy is calculated.
Interface	Adapter for the connection between two devices.
Interharmonic	Sinusoidal components with a frequency which is not an integer time of the fundamental.
Internal beeper	Like the PC speaker; to signalise errors.
Interval	Fixed time period.
ISO9000	Standard to guarantee the quality of devices or appliances.
L	Line supply.
Level	Switch to start up the instrument.
Logical devices	Height of a value.
Mains switch	Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device.
Limit	Border of a value.
Linefeed	<lf>, hex0A, dec 10; jump to the next line; historical from a typewriter, is the most common \Rightarrow EOS character.
Local	In this mode the LMG can be controlled directly by the user at its keyboard; \Rightarrow Remote control.
Logarithmic display	Display scaled with logarithmic axis.
Logging	Store data to memory, printer or any other storage device.
Long number	4 Bytes.
Long term flicker level Plt	A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h.
M	Inner area of a circle is a loop area.

Catchword	Meaning
Manual range	The range settings have to be done by the user.
Measuring converter	Adapter to connect a meter to the \Rightarrow D. U. T.
Measuring cycle	Cycle set up from the user. After this time the meter calculates new values. The exact time depends on the synchronisation frequency.
Measuring settings	All parameters of the meter which influence the measurement.
Memory card	Random access memory card to store data.
Menu	The whole measurement settings are divided in menus to get a better survey.
Miscellaneous	In this menu you can set up several parameters which have no direct influence on the power measurement, like contrast time and date.
Multimeter	Meter which can measure several values like voltage, current and resistance.
N	
Nibble	Half of a byte; upper or lower 4bit.
Noise	Usually random signals with a high bandwidth which are superposed to the useful signal.
Nondecimal numeric program data	Data which can be represented as string instead of a number; e. g. 'Cont on' instead of 'Cont 1'.
Non-linear component losses	Losses caused by non linear loads like inductivities or capacitors or amplifier circuits.
Null modem	Type of serial connection between a PC and another device; the connection cable has two crossed conductor pairs.
0	
Open collector outputs	Passive outputs where the user has access to the collector of the output transistor. You have to connect an external voltage supply to this collector to use the output.
Operator	Instruction which is taken into the calculation:,+- , *, /.
Option Key	A string which can be used to implement software options when the LMG is at the customer.
OR Condition Register	Register which becomes true if an or condition is fulfilled.
Order	\Rightarrow Harmonic order.
Overload capability	A value how far a channel can be overloaded for a special time.
Overload condition	The instrument is in overload condition while the applied signal is too big for the selected range.

Catchword	Meaning
P	
Packed	Data are transferred binary instead of ASCII format
Parallel interface	\Rightarrow Serial interface; here the data is transferred in parallel.
Parity	Even or odd number of 1's in a binary data block; The LMG works without parity.
Parsing	The LMG tries to interpret a formula or interface string and to react correctly.
Partial odd harmonic current	The harmonic content of order 21, 23 ...
PCMCIA memory cards	\Rightarrow Memory card; PCMCIA is the old name for the PC Card standard.
Peak current ranges	Ranges with quiet small allowed TRMS values (because of the heating up of the shunt) but very big allowed peak values; very useful to measure \Rightarrow Inrush currents.
Peak value	Value measured from the zero line to the highest peak of the signal.
Peak-peak value	Measured from the lowest to the highest peak of a signal.
Periodic integration mode	In this mode the integration interval is repeated periodically.
Phase	Conductor of the high potential; typically marked with L.
Phase angles	Usually the angle between current and voltage.
Phase error	The error in power caused by an additional phase shift in the measuring equipment, for example the additional phase shift of a current clamp.
Physical device	Hardware, device (RS232, printer, GPIB...).
Plot function	Mode in which cycle values (e.g. voltage, frequency, ...) are displayed over time.
Power	The energy of a time interval divided by the internal time (e.g. cycle time); so the power is always an averaged value!!
Power factor	Relation between active and apparent power.
Power measuring channel	\Rightarrow Channel.
Power supply	Source which provides the necessary voltage.
Pretrigger	Time before the trigger condition, while which sample values are stored.
Printer header	Upper line of the printer like a title or headline.
Printer output	Socket to connect a printer.
Processing signal interface	Board with Analogue or Digital outputs.
Protocol	Arrangements for communication between devices.
Pulse controlled currents	A modulated current controls the device's power; like in a hot air fan the rapid fire control.

Catchword	Meaning
R	
RAM	Random access memory; you can read and write to this memory.
Range	The measuring range defines the biggest measurable signal. For best accuracy the range should be used for at least 66%.
Reactive energy	Energy which oscillates between source and load without being consumpted.
Reactive power	Average \Rightarrow Reactive energy.
Real measuring time	Time in which the measuring is made, depends on \Rightarrow cycle time and \Rightarrow synchronisation frequency.
Record rate	Ratio in which the sampled values are stored in memory.
Rectified value	The average value of a rectified signal; measured by many analogue instruments \Rightarrow form factor.
Remote control	You can control the LMG via a connection to a PC.
Resolution	Resolution is not \Rightarrow Accuracy!!! In the LMG are two resolutions important: the analogue to digital converter has 16bit resolution, the display has 5 or 6 digit resolution.
Rise time	Time in which the signal rises from zero to the maximum (in practice from 10% to 90%).
Rotary knob	Knob used to set up parameters in the meter or move the \Rightarrow Cursor.
Rotation speed	Speed of the shaft of a motor; rpm.
RS232 interface	\Rightarrow Serial interface.
RTS/CTS	\Rightarrow Protocol to control the data flow of $\mathrm{a} \Rightarrow$ Serial interface.
S	
Safety socket	Connection with high safety against electric shock.
Sample memory	Memory to store the sampled measurement values.
Sample value	Value of a signal measured at a defined time \Rightarrow Instantaneous Value.
Sampling frequency	Frequency with which the samples of a signal are taken.
Scaling	Resolution of an axis or factor which has an influence on the measured value.
Scope function	In this mode the LMG works like an oscilloscope and displays \Rightarrow Sample values.
SCPI commands	A standardised set of commands to remote control the LMG.
Sensors	A small external device which converts a current or voltage

Catchword	Meaning
	to a signal the LMG can measure.
Serial poll	A PC program can ask every connected instrument in series if it has data to send. Used by \Rightarrow GPIB.
SHORT headers	Shorter set of commands, equivalent to \Rightarrow SCPI.
Short term flicker level	A result of statistical processing of instantaneous flicker level quantities over a time period, which typically equals to 10 min .
Shunt input	Special socket to connect the small voltages of an external shunt to the correct channel.
Shuttle knob	\Rightarrow Rotary knob.
Signal coupling	\Rightarrow AC coupling; This coupling affects the measured values.
Signal source	Where you get a signal from; e.g. frequency generator.
Slewrate	Relation between the voltage rise and the used time.
Softkey	This keys change the meaning depending on the menu.
Software options	Options which can be installed with software.
Software update	Updates your software of the LMG. Available on the homepage: www.zes.com.
Status byte register	Register in which several flags are set according to the status of the LMG.
String	Characters lined up in a row.
Sub menu	A subdivision of a menu.
Synchronisation	Periodic signals have to be measured for an integer number of periods. So the LMG must synchronise it's measuring to the signal to get stable values.
System time	Main time of the meter.
T	
Table	Special format for output of measuring values in a table.
Terminal	Each device which takes an account on a data transfer.
Terminal program	\Rightarrow Hyperterminal.
THD values	Total harmonic distortion, relation of the harmonics of a signal to the fundamental.
Time depended signals	Signal of which the values change depending on the time.
Time domain views	Values are displayed over time.
Total Harmonic Current	Sum of all harmonics starting with $2^{\text {nd }}$ order.
Total harmonic distortion	\Rightarrow THD.
Total harmonic distortion factor including noise (THD+N)	\Rightarrow THD with included noise.
Transient	A short, unusual event on a signal.

Catchword	Meaning
Transient mode	Mode in which events can be recorded.
Trigger condition	The trigger starts depending on this condition.
Trigger level	Level on which the trigger starts.
Trigger signal	Signal which gives the trigger event.
TRMS	\Rightarrow True root mean square.
True root mean square	The average of a squared signal.
\mathbf{V}	Values calculated by \Rightarrow Formula Editor.
Variables	Display what you can see in the moment.
Visual display	Changes voltage levels.
Voltage transformers	When the signal passes the zero axis. The positive zero crossing is usually used for \Rightarrow Synchronisation.
\mathbf{Z}	Zoom in: enlarge the display Zoom out: reduce the visual display.
Zero crossing	
Zoom	

15 Common Index

B

basic wave 135
battery 263
BMP2PC 243
C
calculating the measurment uncertainty 249
calculation of measuring values .95; 119; 128; ; 134
calibration 262
capacitance against earth 267; 268
CE-flicker measuring mode. 127
CE-harmonic measuring mode 117
charge 106
colours 64
ComA 62; 239
ComB 62; 239
Commands 141
Common mode rejection 270
condition instruction. 74
configuration 89; 117; 127; 133
default 83
load 83
save 83
configurations saving and restoring 83
connection of the LMG500 49
connectors 60; 238
further 279
constants 75
coupling 90
Coupling of two LMG500 57; 281
crest factor 104; 120
current. 59; 104; 109; 119; 121; 129; 130; 135; 137
delay 94
sensor input 61
sum 107
current ranges 267
current sensors. 270
custom. 60
Custom menu 71; 116; 125; 131; 138
cycle. 89

D

\qquad
D135
data import 247
data logging
16; 125; 131; 138; 241
date
\qquad
dc ... 129
DC value .. 104; 120
default.. 59; 109; 121; 129; 136
default settings ... 49
Default value... 143
definition of measuring values95; 119; 128; 134
delay .. 94
delete
setup ... 49
differential inputs .. 68
digital inputs ..69; 274
digital inputs A... 276
digital inputs B ... 276
digital outputs... 70; 274
digital outputs A... 275
digital outputs B .. 275
dimensions ... 265
display.. 63
display of values 107; 120; 129; 136; 266
dmax .. 129

E

editor.. 73
efficiency.. 81
EN61000-3-2... 120; 125
EN61000-3-3.. 129; 131
EN61000-4-15... 127
EN61000-4-15.. 129
end of logging.. 242
energy ... 106; 107; 110
ENTER .. 59
entering identifiers and text 83
entering numerical values .. 88
Environment variables ... 76
error messages... 248
ESC.. 59
evaluation of harmonics ... 117
EXCEL... 248
expressions... 75
ext. voltage input... 267; 268
External Synchronisation (Sync.) 279

F

factory settings 49
faq 249
features and application areas 27
filter 90; 118; 271
specifications. 271
flicker. 130
flicker mode 127
floppy disk drive. 246
floppy drive 241
fluctuating harmonics 118
form factor 104
format
output. 244
formula editor 73
freeze 60
frequency input 81
frequency inputs 274; 276
Frequency measuring 278
frequently asked questions 249
Fresnel diagramm 115
front panel 59
function fault 257
functional block diagram
computing unit. 284
current channels 284
LMG500 283
processing signal interface 285
voltage channels 283
functions. 77
fundamental. 135
further connectors 279
fuse 265
\boldsymbol{G}
general 27
general handling 29
general menues 64
general set-up 49
globals tab
measuring menu 89; 117; 127; 133
Glossary 287
GPIB 239
grammar 74
graph 59; 111; 123; 131; 138
graphical display. 111; 123; 131; 138
group A / B tab
measuring menu 90; 118
range menu 93
group concept 31

H

handling 29
harmonic mode 133
harmonics 117
header 108
I
I. 61
I*. 61
identifiers 30; 72; 73; 83; 245
IEC 625 239
IEEE. 139
IEEE488 62
IEEE488.2 239
IEEE488.2 commands 141
IF/IO 60; 65
Iff 61
impedance 105
import of data 247
input resistance 267
inrush current 104; 109
installation 49
instructions 74
instructions and warnings 19
instrument controls 59
int. time. 59
Int. val 130
int. value 59
integrated values 105
integration 110; 282
start 111
stop 111
interface settings 65
interface testing 234
interfaces 65; 139
intervals output 243
$I_{\text {sensor }}$. 61
K
keyboard 64
keywords 76
L
L45-Z13 281
L50-O1 139
L50-O2LAN 62
L50-O2USB 60; 62
L50-O3 68; 273
L50-O4 127
L50-05 91
L50-06 37; 52
L50-08 133
L50-09. 117
L50-Z13 57; 281
L50-Z13 281
L50-Z14 270
L50-Z19 90
L50-Z318 62
LAN 62
LAN adaptor 62
limits 121
Linked values 37; 97
list data 140
Local variables 76
logging 241
logging profiles 242
long term flicker 128
long time evaluation 118; 122
M
maintenance 262
Master-Slave 281
measure. 59
measurement uncertainty 268
Measurements at middle and high voltage systems 55
Measurements at middle and high voltage systemswithout N56; 57
measuring 89; 117; 127; 133
measuring channels 266
Measuring circuit (typical) for star to delta conversion (option L50-O6) 52
measuring circuit for measuring efficiency of $3 / 1$ phase systems 51
measuring circuit for measuring efficiency of $3 / 3$ phasesystems54
measuring circuit for typical line applications using theinternal current path50
measuring circuit using an external current sensor 54
measuring configuration. 89; 117; 127
measuring menu
globals tab89; 117; 127; 133
group A / B tab 90; 118
measuring mode
100 harmonics133
CE flicker. 127
CE harmonics 117
normal 89
measuring ranges 92; 119; 128; 134measuring values
calculation.....................................95; 119; 128; 134
memory drive .. 241
menu
custom.. 71
user defined.. 71
messages
error ... 248
misc57; 60; 64; 263; 266; 281
miscellaneous .. 249
MotorTorque-SOFT option .. 81

N

New menu tab ... 72
normal measuring mode... 89
nquery .. 140
null modem .. 239
numerical values.. 88

o

operators .. 78
option
L50-O1.. 139
L50-O2LAN ... 62
L50-O2USB ...60; 62
L50-O3.. 68; 273
L50-04.. 127
L50-05.. 91
L50-06... 37; 52
L50-08.. 133
L50-09.. 117
MotorTorque-SOFT .. 81
options ... 81
options key .. 71
output devices... 242
output formats ... 244
output intervals... 243
overload capability.. 267

P

parallel Port.. 240
PE .. 62
peak-peak value.. 104
physical devices.. 238
plot function .. 113; 138
Plt .. 129
Pmom... 129
power...................59; 104; 107; 110; 120; 122; 130; 137
power factor .. 105; 107
print/log ... 60
printer
62; 240; 241; 243
printing scripts81
processing signal interface 68; 273
PS/2 62
Pst 129
Q
qonly 139
R
range 92; 119; 128; 134
auto 93
range menu group A / B tab 93
sense/more tab 94
ranges 60; 267
reactive energy 106; 107
reactive impedance 105
reactive power 105; 107
rear panel 60
rectified value 104
remarks 79
remote control 139
requirements for reference instruments 263
reset 49; 83
$\mathrm{R}_{\text {sce }}$ 119
RST Default value 143
S
safety instructions 19; 20
sampling 266
save/recall 60
saving and restoring configurations 83
scope function 112
SCPI 139
script editor 73
condition instruction 74
constants 75
examples 79
expressions 75
functions. 77
general 73
grammar 74
instructions 74
keywords 76
operators 78
remarks 79
variables 75
range menu 94
sensor 54
sensor input 61
sensors 270
short term flicker 127
software update 264
spectrum 123
speed and torque calculation 81
star to delta conversion 32; 37; 97
start 60
start of logging 241
status 60
status line 63
stop 60
storage media 246
storage of values 241
memory card and printer 116; 125; 131; 138
suffix 139
sum
current. 107
voltage 106
sync. 62; 279
connector 279
pin configuration 279
signal level 279
signals. 280
Synchronisation external 279
synchronised measurements 281
syntax. 139
system design 279
T
technical data 265
testing the interface 234
tests according EN61000-3-2 125
tests according EN61000-3-3 131
text. 83
time
setup of 64
Timebase 278
torque calculation 81
total harmonic distortion 120
total values 106
trms 104
true root mean square 104
\boldsymbol{U}
U 61
U* 61
uncertainty 249; 251; 263; 268
unpacking and putting into operation 49
update 264
usage of the manual 28
USB 62
USB memory stick 60
$\mathrm{U}_{\text {sensor }}$ 61
user defined menu 71
User defined tab 72
V
Values from single measuring 104
variables 75
Vars tab 72
vector function 115
voltage 59; 104; 109; 119; 121; 129; 130; 135; 137
delay 94
sensor input 61
sum 106
voltage ranges 267
W
weight 265
Wiring

Z

16 Interface command index

*

*CLS 141
*ESE 141
*ESR? 142
*IDN? 142
*ST? 142
*OPC 142
*OPC? 143
*PRE 143
*RST 143
*SRE 144
*STB? 144
*TRG 144
*TST? 144
*WAI 145
/
/nquery/. 140
/qonly/ 139
:
CALCulate :ENVironment 145
:FORMula
[:DEFine] 146
:LIMit
:CLASs 146
:DMAX 147
:FCURrent 147
:FVERsion. 147
:PFACtor 148
:POWer 148
:RSCE 148
:SYSTem 148
:VERSion 149
:ZREF 149
:ZTESt. 149
DISPlay CONTrast 150
:RESet. 150
FETCh
[:SCALar]
CURRent
:AC? 151
:CFACtor? 151
:DC? 152
:FFACtor? 152
:FSCale? 152
:INRush? 152
:MAXPk? 153
:MINPk? 153
:PHASe? 153
:PPEak? 153
:RECTify? 153
:RUSed? 154
[:TRMS]? 154
:CYCLe
:COUNt? 154
:SNUMber? 155
:TIME? 155
:DINPut? 155
ENERgy
:APPArent? 156
:CHARge? 156
:REACtive? 157
:TIME? 157
[:ACTive]? 156
:FLICker
-LTRemain? 160
:PHWave? 161
:SOURce
:APMoment? 161
:DC? 162
:DELTat? 162
:DMAX? 162
:DTMViolation? 162
:HWTRms? 163
:PLT? 163
:PMOMentary? 163
:PST? 163
:RESult? 164
:STATe? 164
:STRemain? 164
[:EUTest]
:APMoment? 158
:DC? 158
:DELTat? 158
:DMAX? 158
:DTMViolation? 159
HWTRms? 159
:PLT? 159
PMOMentary? 159
:PST? 160
:RESult? 160
:FREQuency
:FINPut? 165
:SAMPle? 165
[:SSOurce]? 165
:HARMonics
:AMPFactor? 166
:AMPower? 166
:APFactor? 166
:APOWer? 167
:CDResult? 167
:CURRent
:AAMPlitude? 168
:AFUNdamental? 168
AMPLitude? 169
:FPRotz? 169
:FRESult? 169
:GFResult? 169
:IAMPlitude? 170
:LIMit? 170
:LTResult? 171
:OLIMit? 171
:PHASe? 171
:POHarmonic? 171
:POLimit? 172
:SAVerage? 172
:SMOothed? 172
STATe? 172
:THARmonic? 173
:THDistort? 173
:LTRemain? 173
:POWer
:ACTive. 174
:APParent 174
:DISTortion 174
REACtive 175
:VOLTage :IAMPlitude? 176
[:VOLTage]
AMPLitude? 175
GFResult? 176
:HWCFactor? 176
:LIMit? 177
:LTResult? 177
:MAMPlitude? 177
MAXCfactor? 177
:MAXPhi? 178
:MINCfactor? 178
:MINPhi? 178
:OLIMit? 178
:PHASe? 179
:PPHase? 179
:STATe? 179
:THDistort? 180
:POWer
:AACTive? 180
:AAPParent? 180
:APParent? 181
:AREactive? 181
:FSCale? 181
:ICAPacity? 182
:PFACtor? 182
:PHASe? 182
:REACtive? 182
[:ACTive]? 181
RESistance
:ASResist? 183
:IMPedance? 183
:RSIMpedance? 183
:SSYStem? 184
TRANsient
:STATe? 184
:VARiable? 184
:VNAMe? 185
[:VOLTage]
185
:AC?
185
:AINPut?
186
:CFACtor?
186
:DC?
186
-FFACtor?
186
:FSCale?
:MAXPk? 187
:MINPk? 87
:PHASe? 87
:PPEak? 187
RECTify? 188
:RUSed? 188
[:TRMS]? 188
:FORMat
:DATA 189
:GTL 232
:INITiate
CONTinuous 189
COPY 190
IMMediate. 190
:INPut
COUPling 191
INSTrument
:SELect 192
:LEN 232
:MEMory
:FREeze 192
SSIZe 193
READ
[:SCALar]
:CURRent
:CFACtor?.. 151
:DC?... 152
:FFACtor?... 152
:FSCale?... 152
:INRush? ... 152
:MAXPk? ... 153
:MINPk?... 153
:PHASe?... 153
:PPEak?... 153
:RECTify? .. 153
:RUSed? ... 154
[:TRMS]? ... 154
:CYCLe
:COUNt? ... 154
:SNUMber? .. 155
:TIME?... 155
:DINPut? .. 155
:ENERgy
:APParent?.. 156
:CHARge? .. 156
:REACtive? ... 157
:TIME?... 157
[:ACTive]?.. 156
:FLICker
:LTRemain?.. 160
:PHWave?... 161
:SOURce
:APMoment?.. 161
:DC?.. 162
:DELTat?... 162
:DMAX?.. 162
:DTMViolation? 162
:HWTRms?.. 163
:PLT? ... 163
:PMOMentary? 163
:PST?... 163
:RESult?.. 164
:STATe?... 164
:STRemain?... 164
[:EUTest]
:APMoment?.. 158
:DC?... 158
:DELTat?... 158
:DMAX?.. 158
:DTMViolation? 159
:HWTRms?... 159
:PLT? .. 159
:PMOMentary? 159
:PST?... 160
:RESult?.. 160
:FREQuency
:AAPParent? 180
:APParent? 181
:AREactive? 181
:FSCale? 181
:ICAPacity? 182
:PFACtor? 182
:PHASe? 182
:REACtive? 182
[:ACTive]? 181
:RESistance
:ASResist? 183
:IMPedance? 183
:RSIMpedance? 183
:SSYStem? 184
:TRANsient
:STATe? 184
:VARiable? 184
:VNAMe? 185
[:VOLTage]
:AC? 185
:AINPut? 185
:CFACtor? 186
:DC? 186
:FFACtor? 186
:FSCale? 186
:MAXPk? 187
:MINPk? 187
:PHASe? 187
:PPEak? 187
:RECTify? 188
:RUSed? 188
[:TRMS]? 188
:SENSe:AINPut
:DIFFerential 193
:FSCale 194
:ZERO 194
:ARON 194
:AVERage
:COUNt 195
:CURRent
:DELay 196
:DETector 196
:IDENtify? 196
:RANGe
:AUTO 197
:LINTern? 197
[:UPPer] 197
:SCALe 198
:FILTer
:AFILter 198
[:LPASS]
[:STATe] 199
:FINPut
:SCALe 200
:FLICker
:PERiods 201
:STIMe 201
:HARMonics
:FDIV 201
:ISTart. 202
:REFerence 202
:SMOoth 202
:TIME. 203
:INTegral
:DATE 203
:INTerval 203
:MODE. 204
:STATe? 204
:TIME. 204
RPValues 205
:SWEep
:TIME. 205
:TRANsient
:ACRegister 206
:ALIMit 206
:BLIMit 207
:DURation 207
:FUNCtion 207
:OCRegister. 207
:SIGNal 208
:VOLTage
:DELay 209
:DETector 209
:IDENtify 209
:RANGe
:AUTO 210
:LINTern? 210
[:UPPer] 210
:SCALe 211
WAVeform
:DIVision 211
:IUPDate 212
:SATRigger? 212
:SBTRigger? 212
:SCTRigger? 213
:SRATe? 213
:WAVE? 213
:WIRing. 214
:ZPReject. 214
:SOURce
:DIGital
CONDition 215
:LIMit 215
:VALue 216
:VOLTage
:SCALe:FSCale216
:ZERO 217
:VALue 217
:STATus
:OPERation
:CONDition? 217
:ENABle. 218
:NTRansition 218
:PTRansition 218
[:EVENt]? 218
:PRESet 218
:QUEStionable
:CONDition?219
:ENABle. 219
:NTRansition 220
:PTRansition 220
[:EVENt]? 220
:SYSTem
:BEEPer
:IMMediate 221
DATE. 221
:ERRor
:ALL? 222
:COUNt? 223
[:NEXT]? 223
:HELP
:HEADers? 224
:SHEaders? 224
:KEY 224
:LANGuage 225
:OPTions? 225
:PHEader 226
:TIME. 226
:VERSion? 226
:TRIGger
:ACTion 227
:ICURrent 227
:INTerval
:RESet 228
:STARt 228
:STOP 229
:TREStart 229
:TSTop 229
:TRANsient
:CONTrol 232
[:SEQuence]
:DEModulator. 230
:HPASs. 230
:LPASs 230
:SOURce 231
$<$
<list> data140

A

AC
current 151
voltage 185
action 227
active
energy 156
power. 181
active power 174
active serial resistance 183
actualisation
measuring values 190
AIDI 193
AIHI 194
AILO 194
Ain. 185
AIVA? 85
amplitude
current harmonics 169
voltage harmonics 175
analogue input
differential inputs 193
full scale 194
voltage. 185
zero position 194
analogue output
full scale 216
zero position 217
analogue outputs value 217
AND condition
transients. 206
anti-aliasing 198
AOHI 216
AOIX 217
AOLO 217
apparent
energy 156
power. 181
apparent power harmonics. 174
ARON 194
AVER 195
average 195
average active power 180
average amplitude current harmonics 168
average apparent power 180
average reactive power 181
averaged momentary flicker level. 158; 161
B
BEEP 221
beeper 221
C
Calculations environment 145
capacitive 182
change command set 225
charge. 156
class D result. 167
clear
error/event queue 141
event registers 141
command set change 225
condition
digital outputs 215
CONT 189
continuous execution 189
contrast 150
control
transient 232
COPY. 190
COUNT? 154
counter measuring cycle 154
coupling
signal 191
crest factor 176
current. 151
maximum 177
minimum 178
voltage. 186
current
AC 151
autorange 197
crest factor 151
DC 152
fluctuating harmonics result 169
form factor 152
full scale 152
harmonic phases 171
harmonics amplitude 169
harmonics average amplitude 168
harmonics limit. 170
harmonics maximum duration 169
harmonics result 171
inrush 152
interharmonics 170
maximum 153
maximum averaged fundamental 168
minimum 153
partial odd harmonic 171
peak peak 153
phase angle. 153
range 197
range usage. 154
rectified. 153
reset inrush. 227
scaling 198
smoothed averaged harmonic 172
smoothed harmonic 172
THD. 173
total harmonic 173
trigger inrush 227
TRMS 154
current input
delay 196
current sensor identify 196
CYCL 205
cycle 205
sample counter 155
cycle time 205
CYCR? 155
D
D. 174
d(t) 158; 159; 162
D? 174
data output format 189
date. 221
start energy 203
system 221
DC 158; 162
current 152
voltage 186
dcl 158
dcs 162
Delay current input 196
Delay voltage input 209
demodulator sync. 230
device
reset 143
differential analogue inputs. 193
DIFQ? 165
DIFS 200
DigFrq 165
digital inputs 155
digital outputs
condition 215
limits 215
value 216
display
contrast 150
default values 150
reset 150
DISR 150
DIST? 155
distortion power 174
dmax 158; 162
dmax limit 147
dmax 158
dmaxs 162
DOCO 215
DOIX 216
DOLI 215
dtl 158
dts. 162
E
EDIT 149
edition
flicker standard 147
harmonic standard 149
EI? 156
energy
active. 156
apparent 156
reactive. 157
reset 228
start. 228
start date 203
start time 204
state 204
stop 229
time interval 203
ENV. 145
environment 145
EP. 156
EP? 156
EQ. 157
EQ? 157
ERR? 223
ERRALL? 222
ERRCNT? 223
error
oldest 223
error/event queue clear 141
errors. 222
number of 223
ES 156
ES? 156
EVAL 146
evaluation
harmonics 146
event duration transients 207
event registers
clear141
Event Status
Enable Register 141
Register. 142
example
basic. 232
SCPI 234
SHORT 236
execution
continuous 189
external shunt input 196
F
f. 165
FAAF 198
FDIV 201
FILT 199
filter 199
anti-aliasing 198
FLCF? 176
FLCN? 178
FLCX? 177
FLDC? 158
FLDL 147
FLDT?. 158
FLDX? 158
flicker
averaged momentary level. 158; 161
d(t) 158; 159; 162
dc. 158; 162
dmax 158; 162
half wave TRMS 159; 163
momentary level 159; 163
periods 201
Plt. 159; 163
Pst. 160; 163
remaining long time 160
remaining short time. 164
result 160; 164
short term measuring time 201
start. 228
state 164
stop 229
Zref 149
Ztest 149
flicker standard
version, edition. 147
FlkPer 201
FLLT? 159
FLMO? 158
FLMS? 159
FLMV? 159
FLPH? 161
FLPN? 178
FLPS 201
FLPX? 178
FLRE? 160
FLRM? 159
FLST? 160
FLTR? 160
FLUP? 179
FNRM 147
FORM 146
form factor
current. 152
voltage. 186
format
data output 189
Formula Editor 146
environment 145
freezes
scope 192
FREQ? 165
frequency
processing signal interface 165
sample 165
synchronisation source 165
frequency divider ratio 201
frequency input
scaling. 200
FRMT 189
FRZ 192
FSDC? 162
FSDT? 162
FSDX? 162
FSI? 152
FSLT? 163
FSMO? 161
FSMS? 163
FSMV? 162
FSP? 181
FSRE? 164
FSRM? 163
FSST? 163
FSTA? 164
FSTR? 164
FSU? 186
FTIM 201
full scale
analogue input 194
analogue output 216
current. 152
power 181
voltage 186
function
transients 207
fundamental current harmonic limits 147
\boldsymbol{G}
GFRQ? 213
GMEM 193
GMUL 211
GTL 232
H
half wave
crest factor 176
half wave power 161
half wave TRMS 159; 163
harmonic limit
partial odd 172
harmonic limits
fundamental current 147
power 148
power factor 148
rsce 148
harmonic standard version, edition. 149
harmonics
active power 174
apparent power 174
average current amplitude 168
class D result. 167
current amplitude 169
current check result 169; 172
current limits 170
current phases 171
current result 171
evaluation. 146
fluctuating current result 169
interharmonics current 170
interharmonics voltage 176
maximum amplitude voltage 177
maximum averaged fundamental current 168
maximum duration. 169
measuring time 203
partial odd current 171
reactive power 175
remaining long time 173
smoothed averaged current 172
smoothed current 172
smoothing 202
THD current 173
THD voltage 180
total current 173
voltage amplitude 175
voltage check results 176; 179
voltage limit 177
voltage phases 179
voltage result 177; 178
HEAD? 224
headers
SCPI. 224
SHORT 224
HENS? 167
HFMX? 169
HIAM? 169
HIAS? 172
HIAV? 168
HIFL? 169
HIFM? 168
HIGF? 169
high pass sync 230
HIHD? 173
HILM? 170
HILT? 171
HIMA? 172
HIOV? 171
HIPH? 171
HIST? 172
HIZA? 170
HLIP? 172
HLTR? 173
HNRZ 202
HPAM? 174
HPAV? 167
HPFA? 166
HPFM? 166
HPM? 166
HPOC? 171
HQAM? 175
HREF 202
HSAM? 174
HTHC? 173
HTIM 203
HUAM? 175
HUGF? 176
HUHD? 180
HULM? 177
HULT? 177
HUMX? 177
HUOV? 178
HUPH? 179
HUST? 179
HUZA? 176
I
Iac 151
IAC? 151
IAM 197
Iaver 168
Icf. 151
ICF? 151
Idc. 152
IDC? 152
identification 142
Identify current sensor 196
Identify voltage sensor 209
IDLY 196
IDNI? 196
IDNU 209
IEXT 196
Iff. 152
IFF? 152
Ih 169
IILS 197
Iinr 152
IINR? 152
IL. 170
IMAX? 153
IMIN?. 153
impedance 183
reactive serial 183
reference 149
test 149
INCA? 182
Individual Status Query 142
inductive 182
INIM 190
initiate measuring 190
inrush current 152
trigger 227
INTD. 203
integration mode 204
interharmonics
current 170
start. 202
voltage. 176
internal shunt input 196
interval energy 203
INTI 203
INTM 204
INTR? 157
INTS? 204
INTT 204
IP. 171
IPHI? 153
Ipkn 153
Ipkp 153
Ipohc 171
Ipp. 153
IPP? 153
IREC? 153
Irect. 153
IRNG. 197
ISCA 198
Iscal. 198
ISO. 147
Ithc 173
Ithd. 173
Itrms 154
ITRMS? 154
K
KEY 224
L
LEN 232
limit
current harmonics 170
damx 147
partial odd harmonic 172
voltage harmonics 177
limits
digital outputs 215
transients 206; 207
list
ranges
current 197
voltage. 210
list data 140
local state 232
low pass
sync 230
M
maximum averaged fundamental current 168
current. 153
voltage 187
maximum amplitude voltage harmonics 177
maximum crest factor voltage. 177
maximum duration current harmonics 169
maximum phase
peak value voltage 178
maximum smoothed power 166
maximum smoothed power factor 166
measuring cycle real time 155
measuring cycle counter 154
measuring mode 192
measuring time
harmonics 203
short term flicker 201
measuring values actualisation 190
memory size 193
minimum
current 153
voltage 187
minimum crestfactor voltage 178
minimum phase peak value voltage 178
MODE 192
integration 204
measuring 192
momentary flicker level 159; 163
averaged 158; 161
Mtime 155
N
new information about waveform 212
nquery 140
number of errors 223
NVAR? 185
\boldsymbol{O}
oldest error 223
Operation Status
Condition Register 217
Enable Register 218
Event Register 218
Negative Transition Register 218
Positive Transition Register 218
options installed 225
OvrI 154
OVRI? 154
OvrU 188
OVRU? 188
P
P. 181
P? 181
Parallel Poll Enable Register 143
Partial odd harmonic current 171
Partial odd harmonic limit 172
peak peak
current. 153
voltage. 187
periods
flicker. 201
PF 182
PF? 182
PFSO. 148
Ph. 174
phantom values reject 205
phase current harmonics 171
Fresnel 202
maximum peak voltage 178
minimum peak voltage 178
reference 202
voltage harmonics 179
phase angle 182
current. 153; 187
voltage peak 179
PHDR. 226
PHI. 182
PHI? 182
Plt 159; 163
Pltl 159
Plts 163
Pm. 180
PM? 180
Pml 159
Pmoml 158
Pmoms 161
Pms 163
power
active. 181
apparent 181
average active 180
average apparent 180
average reactive 181
capacitive 182
distortion 174
full scale 181
half wave 161
harmonic limits. 148
inductive 182
maximum smoothed 166
reactive 182
smoothed 167
power factor 182
harmonic limits 148
maximum smoothed 166
smoothed 166
PRES 218
Preset
operation and query registers 218
printer header 226
processing signal interface
frequency 165
PSO. 148
Pst. 160; 163
Pstl 160
Psts 163
Q
q.156; 182
Q? 182
Qh 175
Qm 181
QM? 181
qonly 139
Questionable Status
Condition Register 219
Enable Register 219
Event Register 220
Negative Transition Register 220
Positive Transition Register 220
\boldsymbol{R}
range
current 197
voltage. 210
range usage154
voltage. 188
ranges
voltage 210
ratio
frequency divider 201
reactive
energy 157
reactive power 182
harmonics 175
reactive serial impedance 183
real measuring time 155
rectified
current 153
voltage. 188
reference
phase 202
reference impedance 149
register
Event Status 142
Event Status Enable 141
Operation Status Enable 218
Operation Status Event 218
Operation Status Negative Transition 218
Operation Status Positive Transition 218
Parallel Poll Enable 143
Preset
operation and query 218
Questionable Status Condition 219
Questionable Status Enable 219
Questionable Status Event 220
Questionable Status Negative Transition 220
Questionable Status Positive Transition 220
Service Request Enable 144
Status Byte 144
reject phantom values 205
remaining long time
flicker. 160
harmonics 173
remaining short time. 164
remote - operation. 232
remote state 232
reset 228
device 143
display. 150
energy 228
resistance
active serial 183
impedance 183
result
class D 167
current fluctuating harmonics 169
current harmonics 171
flicker 164
flicker measuring 160
harmonics current check 169; 172
harmonics voltage check 176; 179
voltage harmonics 177; 178
RLS? 184
RngI 197
RngU 210
RSCE 148
Rser. 183
RSER? 183
running integration time 157

S

S
S? 181
SACT 212
sample counter 213
sample values 213
memory size 193
saving ratio 213
sample values after trigger 212
sample values before trigger 212
samples per division 211
sampling frequency 165
SATR? 212
SBTR? 212
scaling
current 198
frequency input 200
voltage 211
scope
freeze 192
SCPI
example. 234
version 226
SCPI headers 224
script editor 146
SCTC? 155
SCTT? 213
self test. 144
sensor
identify current 196
identify voltage. 209
sensor input 196; 209
Service Request Enable Register. 144
Sh. 174
SHEAD? 224
SHORT
example. 236
SHORT headers 224
short term flicker measuring time 201
shunt inputinternal/external ... 196
signal
transients. 208
signal coupling 191
Sm. 180
SM? 180
SMOO. 202
smoothed
average harmonic current 172
harmonic current. 172
smoothed power 167
smoothed power factor 166
smoothing
harmonics. 202
SMPL? 165
SOC? 217
SOE? 218
SOEN 218
SONT 218
SOPT 218
SQC? 219
SQE? 220
SQEN 219
SQNT 220
SQPT 220
START 228
energy 228
flicker 228
start date energy 203
start time energy 204
startup current 152
reset 227
state
energy 204
flicker 164
local 232
remote 232
transients? 184
Status Byte Register 144
STOP 229
energy 229
flicker 229
transients 229
supply system 148; 184
SYNC. 231
synchronisation demodulator 230
high pass 230
low pass 230
source 231
synchronisation source frequency 165
syntax 139
SYSD 148
system
supply 148; 184
system date 221
system time 226
T
TACR 206
TCTL 232
TDUR 207
test impedance 149
TFUN 207
THD
current. 173
voltage 180
time 226
cycle 205
measuring harmonics 203
running integration 157
short term flicker measuring time 201
start energy 204
system 226
time interval energy 203
TLIA 206
TLIB 207
TOCR 207
Total harmonic current 173
transients
AND condition register 206
event duration 207
function 207
imits 206; 207
OR condition register 207
signal 208
start 229
state 184
stop 229
TRGA 230
TRGP 230
TRGT 230
Trigger 144
demodulator 230
high pass 230
inrush current 227
low pass 230
sample counter 213
source. 231
TRMS
current 154
half wave 159; 163
voltage 188
TRST 229
TSRC 208
TSTA? 184
TSTP 229
\boldsymbol{U}
Uac 185
UAC? 185
UAM 210
Ucf 186
UCF? 186
Udc 186
UDC? 186
UDLY 209
UEXT 209
Uff 186
UFF? 186
Uh 175
Uhwl 159
Uhws 163
UILS 210
UL 177
UMax 177
UMAX? 187
UMIN? 187
UP 179
UPHI? 187
Upkn 187
Upkp 187
Upp. 187
UPP? 187
UREC? 188
Urect 188
URNG 210
USCA. 211
Uscal 211
Uthd 180
Utrms 188
UTRMS? 188
V
value
analogue outputs 217
digital outputs 216
VAR? 184
variables 184
access by name 185
version
flicker standard 147
harmonic standard 149
voltage
AC 185
analogue input 185
autorange. 210
crest factor 186
DC 186
form factor 186
full scale 186
harmonics amplitude 175
harmonics limit. 177
harmonics phase 179
harmonics result 177; 178
interharmonics 176
maximum 187
maximum crest factor 177
maximum harmonics amplitude 177
maximum phase 178
minimum 187
minimum crestfactor 178
minimum phase 178
peak peak 187
peak phase angle 179
phase angle 187
range 210
range usage 188
rectified. 188
scaling 211
THD 180
TRMS 188
voltage input. 209
delay 209
voltage sensor
identify 209
W
Wait 145
WAVE? 213
waveform
new information about 212
sample values 213
sample values after trigger 212
sample values before trigger 212
WIRE 214
wiring. 214
X
Xser 183
XSER? 183
Z
Z 183
Z? 183
zero point rejection 214
zero position
analogue input 194
analogue output 217
ZREF 149
ZTST. 149

