
Application Note 108 Rev.1.1

1/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Programmer’s Guide

© Copyright 2011

ZES ZIMMER Electronic Systems GmbH
Tabaksmühlenweg 30
D-61440 Oberursel (Taunus), FRG
Phone +49 (0)6171 628750
Fax +49 (0)6171 52086
E-mail: sales@zes.com
Internet: www.zes.com

No part of this document may be reproduced, in any form or by any means, without the
permission in writing from ZES ZIMMER Electronic Systems GmbH.

Regard DIN 34!

We reserve the right to implement technical changes at any time, particularly where these
changes will improve the performance of the instrument.

Application Note 108 Rev.1.1

2/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Content

1 Introduction .. 5
1.1 Interface types ... 5
1.2 Applications .. 6
1.3 Concept ... 6
1.4 Programming language... 7
1.5 Hello world ... 7

2 Description .. 10
2.1 Background of RS232, IEEE488 and SCPI .. 10
2.2 Program messages .. 11

2.2.1 Identification (ID) .. 11
2.2.2 Combining commands ... 12
2.2.3 Small and capital letters ... 12
2.2.4 Channel number (suffix) ... 12
2.2.5 qonly/, /nquery/ and `?` .. 12
2.2.6 SCPI language ... 13

2.2.6.1 Longer and shorter SCPI commands .. 16
2.2.6.2 Default values like [...] .. 16
2.2.6.3 The `|`-Symbol (or) ... 17

2.2.7 ZES SHORT language ... 17
2.2.8 Parameters .. 18

2.2.8.1 <NRi>, <NRf> .. 18
2.2.8.2 <list> .. 20
2.2.8.3 <string> .. 20

2.2.9 Syntax diagrams .. 22
2.3 Response messages .. 25

Syntax diagram .. 27
2.3.1 Invalid data, NaN .. 28

2.4 Data flow, system structure ... 29
2.5 Opening the interface .. 32

2.5.1 Deleting the PC’s output buffer ... 32
2.5.2 Resetting the LMG interface ... 33
2.5.3 Deleting the PC’s input buffer .. 33
2.5.4 Resetting register structure and error queue ... 33
2.5.5 Resetting the measuring unit ... 34
2.5.6 Python Example .. 34

2.6 Closing the interface .. 35
2.6.1 Python Example .. 35

2.7 Writing to the interface ... 36
2.7.1 Data format ... 37
2.7.2 EOS and EOI .. 37

Application Note 108 Rev.1.1

3/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.7.3 Timeout ... 38
2.7.4 Usage of ‘*OPC?’ ... 39

2.7.4.1 Command sequence .. 41
2.8 Reading from the interface .. 42

2.8.1 Single request ... 43
2.8.1.1 :INITiate:IMMediate and INIM ... 43
2.8.1.2 :INITiate:COPY and COPY .. 44

2.8.2 :FETCh, :READ and SHORT commands ... 44
2.8.3 Timeout ... 45
2.8.4 EOS and EOI .. 46

2.8.4.1 Binary data ... 46
2.8.4.2 String data .. 46

2.8.5 Buffer and real time .. 47

3 Advanced programming .. 47
3.1 Automatic request .. 47

3.1.1 :TRIGger:ACTion and ACTN .. 48
3.1.2 Continuous mode .. 48

3.2 Binary answers .. 49
3.3 Control structures ... 51

3.3.1 Status Byte Register ... 53
3.3.2 Queues ... 54
3.3.3 General construction of a register structure .. 54

3.3.3.1 Condition registers ... 55
3.3.3.2 Transition filters ... 55
3.3.3.3 Event register ... 56
3.3.3.4 Event enable register and summary message 56
3.3.3.5 Example .. 56

3.3.4 Main structures ... 56
3.3.4.1 Operation status data structure ... 56
3.3.4.2 Questionable status register structure .. 57
3.3.4.3 Standard event status register ... 57

3.4 FAQ .. 57
3.4.1 How to find a command? ... 57
3.4.2 How to specify different channels? .. 57
3.4.3 How to change the analogue outputs? ... 58
3.4.4 General hints ... 58
3.4.5 Hardware RS232 communication logging .. 59

Application Note 108 Rev.1.1

4/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figures
FIGURE 1: SCPI FUNCTIONAL MODEL ... 13
FIGURE 2: GENERAL TREE STRUCTURE ... 15
FIGURE 3: START OF STRING ... 21
FIGURE 4: QUOTATION MARK INSIDE A STRING .. 21
FIGURE 5: END OF STRING .. 21
FIGURE 6: START OF STRING ... 21
FIGURE 7: END OF STRING .. 22
FIGURE 8: OVERVIEW TERMINATED PROGRAM MESSAGES .. 23
FIGURE 9: OVERVIEW PROGRAM DATA ... 24
FIGURE 10: OVERVIEW TERMINATED RESPONSE MESSAGE ... 28
FIGURE 11: TRANSFER STRUCTURE ... 29
FIGURE 12: SYSTEM OVERVIEW OF DATA FLOW ... 31
FIGURE 13: CONTROL STRUCTURE OVERVIEW .. 52
FIGURE 14: CONTENT OF A REGISTER STRUCTURE .. 55
FIGURE 15: CIRCUIT DIAGRAM FOR AN RS232 OBSERVER ... 59

Examples

EXAMPLE 1: PROGRAM HELLO.PY.. 8
EXAMPLE 2: READING THE DC VOLTAGE ... 11
EXAMPLE 3: FREEZING SCOPE MEMORY .. 11
EXAMPLE 4: RESET OF INSTRUMENT .. 11
EXAMPLE 5: PROGRAM STRING.PY .. 26
EXAMPLE 6: PROGRAM OPEN.PY ... 35
EXAMPLE 7: PROGRAM CLOSE.PY .. 36
EXAMPLE 8: PROGRAM WRITEOPC.PY .. 39
EXAMPLE 9: PROGRAM G_TOOL.PY .. 40
EXAMPLE 10: PROGRAM OPC.PY ... 40
EXAMPLE 11: PROGRAM SEQ1.PY .. 41
EXAMPLE 12: PROGRAM SEQ2.PY .. 42
EXAMPLE 13: PROGRAM GET_DATA.PY ... 45
EXAMPLE 14: PROGRAM BINARY.PY .. 51

Application Note 108 Rev.1.1

5/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

1 Introduction

This programmer’s guide was written to clarify some important points which occur when
programming measuring instruments. It was written especially for the current series of
precision power meters from ZES ZIMMER Electronic Systems (LMG95, LMG450 and LMG500).
Due to the compatibility of our instruments to standards like SCPI, this guide is also a
general purpose help when programming instruments from other manufacturers.
This guide offers

• A short introduction into the programming. We start with a simple example to show what
to do. This example has a lot of links to the detailed descriptions. See chapter 1,
‘Introduction’

• A detailed description of all steps, from a detailed syntax description to the handling of
the interface. See chapter 2, ‘Description’

• Many hints for efficient programming in your application. See chapter 3, ‘Advanced
programming’

This guide is only available in English. This should be no practical problem, because most
literature for programmers is written in English.

Petition
This guide was written on suggestion of some users. We tried to implement the answers on
everything which we were asked for. But of course such a guide will never be complete and
perfect. So please

• if you have any questions, please contact us (www.zes.com).

• if you have any proposals what to add to or change in this guide, please contact us.

• if you find any errors in this guide, please contact us.

This guide can just be improved with the help of you, the users.
Thank you very much for your help!

1.1 Interface types

To communicate with a computer you need a computer interface in your measuring
instrument. Despite modern standards like USB or Ethernet, the RS232 and the IEEE488
interface are still the most commonly used interface types today for high end measuring
equipment.

There are some main differences between RS232 and IEEE488:

Application Note 108 Rev.1.1

6/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

• The costs of an IEEE488 (sometimes also called GPIB = General Purpose Interface Bus)
card are high. The RS232 is implemented in most PCs. For some modern PCs which only
have USB interfaces, ZES offers USB to RS232 converters. The drivers of these converters
create a virtual COM port, so the programming is the same as for a real RS232 interface.

• To an RS232 interface you can connect only one instrument. The IEEE488 can connect up
to 30 instruments.

• The maximum data speed of RS232 is 22.5KByte/s, IEEE488 can reach 1MByte/s.

Further information about these interfaces you can find in chapter 2.1, ‘Background of
RS232, IEEE488 and SCPI’.

1.2 Applications

There are two typical applications, how an instrument is used together with a computer.
A single instrument is typical in applications where you have to get and store measuring
values for a longer time. Or where you want to get and store measuring values if some set-
up is finished and you want to document this. Further on you can set-up an instrument for
a measuring application.

For this purpose you can use already existing programs like ‘LMG-CONTROL’ from ZES. This
program configures the instrument and then logs the data as long as you want. This can be
done via RS232 or IEEE488 interface. The data can be exported to ASCII format and then be
used in other applications (like Excel) for further evaluation.

Such a terminal program can always control just one instrument. If you have more
measuring instruments or other instruments (like function generators, programmable loads,
frequency converters ...) you will need other solutions.

In other words: If you have more than one instrument to handle you can perhaps use
several independent programs. But there are several disadvantages:

• synchronisation problems between the programs

• writing to different files for storing the measuring results, so it is difficult to find
corresponding data.

• IEEE488 bus controller cannot be handled by different independent programs, so just one
instrument can be used!

The best way in this case is to write your own program. General purpose programs for this
case cannot exist.

To give you some help for doing this is the task of this manual.

1.3 Concept

In principle the communication is a game of question and answer. You send a message
(details follow in 2.2, ‘Program messages’) to the instrument. This message is executed

Application Note 108 Rev.1.1

7/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

(details follow in 2.4, ‘Data flow, system structure’). If the message requires an answer, the
instrument will send back this answer (details follow in 2.3, ‘Response messages’). To send
a message you need a communication interface.

There are four important functions for the communication from your PC to the instrument:

• Open the interface (details follow in 2.5, ‘Opening the interface’)
• Close the interface (details follow in 2.6, ‘Closing the interface’)
• Write data to the instrument (details follow in 2.7, ‘Writing to the interface’)
• Read data from the instrument (details follow in 2.8, ‘Reading from the interface’)

With these basic steps we could start to write our first program.

1.4 Programming language

There are a lot of programming languages. Some support IEEE488 interface, some not, some
are easy to handle, some have graphical symbols instead of the typical source text.
Frequently used languages are:

• C/C++

• LabVIEW

• LabWindows

• Basic

There are a lot of other possibilities. If you got this manual as file, there was also delivered
a ‘Python’ interpreter with a lot of examples. Python is a language which is easy to learn
and to understand. The advantage is, that Python is freeware and you can get and
modify/extend the sources. For more details see http://www.python.org

ZES ZIMMER has written a RS232 driver to enable easy access from Python to this interface.
That is the reason, why we deliver this program together with this manual. You can work
directly with the examples and your instrument and you can modify the examples and test
what happens.

Nevertheless those are just simple examples which are easy to understand and to transform
in any other language you prefer for programming. You will not have to learn Python to
understand this guide.

1.5 Hello world

Like in other programming languages we could output this simple text. But it is no problem
to get instead the first real answer from the LMG. The first test program is:

Application Note 108 Rev.1.1

8/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

HELLO.PY

load ZES RS232 functions
import zes

Open the serial interface:
LMG=zes.Open("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

Write command to instrument
zes.Write(LMG, "*IDN?")

Read answer from instrument
answer=zes.Read(LMG)

Output answer on screen
print "The connected instrument is:\n"+answer

Write command to instrument
zes.Write(LMG, "GTL")

Close connection
zes.Close(LMG)
print "\nProgramm finished"

Example 1: Program HELLO.PY

The parts of this program are explained in the following. Comments in Python start with a
‘#’ and are valid until the end of the line.

import zes Includes the ZES library for RS232 support. Now you can use all
commands starting with ‘zes.’

LMG=zes.Open("COM1",
"BAUD=38400 EOS=LF
PROTO=RTS/CTS")

Open the serial interface COM1 at your computer with
38400 baud, EOS is <lf> (linefeed) and protocol is RTS/CTS. This
interface is referenced from now with the variable ‘LMG’.
Please make sure, that you have set-up the LMG with exactly the
same data!

zes.Write(LMG, "*IDN?") Send the command ‘*IDN?’ (Identify) to the instrument with the
reference ‘LMG’. Thereby the identification of the instrument is
requested.

answer=zes.Read(LMG) Read the answer from the instrument and store it in the variable
answer.

print answer Output this variable on the screen.

Application Note 108 Rev.1.1

9/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

zes.Write(LMG, "GTL") Send the command ‘GTL’ (Go to local) to the instrument. After
this you can operate it again from its panel.

zes.Close(LMG) Close the interface.

Before you can start this program you have to set-up the communication. Use a simple
RS232 cable (1:1, no null modem function) and connect it to COM1 of your PC. Connect the
other side to ‘COM A’ or COM1 of your instrument. If COM1 of your PC is not available you
can also use COM2 or any other COM port. In this case you have to change the parameter to
the zes.Open line in the program.

Now switch on PC and instrument and set-up the following in the IF/IO menu:
COM A, 38400 Baud, EOS = <lf>, Echo off, Protocol RTS/CTS. Usually you get these values
when selecting ‘COM A OEM Appl. with 38400 Baud’. See instrument manual for details.

The instrument is now set-up in the same way as the program above will open the
communication port. This is very important!

To start this program install the Python directory on your computer. Now change to your
DOS prompt and enter:
bin\python hello.py

You could also double click on the icon of hello.py and set-up, that this type of file should
be executed by the python.exe file. But please note that the output window might close
after executing the program and you will not be able to read the messages.
If you have a working connection to the instrument, the instrument should answer with its
identification which will look like this:

ZES ZIMMER Electronic Systems GmbH, LMG95, 04700102, 3.087

With the common command `*IDN?` the instrument is requested to return its identification.
According to the standard the ZES ZIMMER instruments return several information in four
fields which are separated by comma.

Field 1: Manufacturer
Field 2: Model
Field 3: Serial number
Field 4: Software version

The last three fields depend of course on your individual instrument.

If this example fails please check the following and try again:

• Is the COM port of your PC really available? Sometimes other programs block it.

• Is the hardware of this COM port ok? Check it with any other serial communication or use
another PC for this test.

Application Note 108 Rev.1.1

10/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

• Did you use a correct cable? The cable has to have all 9 wires, not just 3! Do not use a
null modem when connecting to COM A of the instrument.

If the problems do not vanish, please contact us:
http://www.zes.com

Note
The above program will work under usual conditions. But there are a lot of improvements,
starting with the opening of the interface, reading values, ...

These improvements would be confusing at this time and would obscure the important
basics, which should be demonstrated. But of course they are explained later on.

2 Description

2.1 Background of RS232, IEEE488 and SCPI

For the data exchange between PC and measuring instrument we use the most common
interfaces: RS232 and IEEE488.

The RS232 is a serial interface which is used between one PC and one instrument.
The IEEE488 is a parallel interface between one PC and one or several instruments. The
relevant standards are IEEE488.1 and IEEE488.2, extended by SCPI (Standard Commands for
Programmable Instruments).

The first developments were done by HP (Hewlett-Packard) under the name GPIB (General
Purpose Interface Bus) in the 1970’s. It described the physical functions of the interface
like signals, wires, hardware protocol, dimensions, ...

Further on some universal commands were defined, which are transferred by special states
of the control signals and not on the usual data path. These universal commands were not
used for data exchange, but for controlling the instrument (e.g. device clear, remote
enable, ...).

This was converted to IEEE488.1 in the mid 80’s. Up to then there was no standard, which
commands should be sent. Each manufacturer used his own command set. This could be very
confusing.

The IEEE488.2 defines very exact rules for the instrument syntax as well as some common
commands. These commands are transferred as ASCII commands via the usual data path.
The common commands are commands which apply to all instrument (like ‘*IDN?’ to get the
instrument identification) and do not take care about special instrument features. Each
common command starts with a ‘*’.

SCPI extends the IEEE488.2 rules by device specific commands for many measuring values.
By this it should be possible to connect instruments from different manufactures to a bus
system and get the same results with the same commands.

Application Note 108 Rev.1.1

11/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

The SCPI commands are also ASCII strings.
The SCPI commands are arranged in a tree structure with a root (similar to a PCs file system
path).

In contrast to this, a universal command (IEEE488.1) can be sent at any time, even while a
common command/device specific command is sent or executed. This is very important to
keep in mind for one of the following sections.

2.2 Program messages

A message to the instrument can be composed of several commands (common commands
and device specific commands, but not universal commands!). It is an ASCII string which is
terminated by an EOS (= end of string) symbol.

The commands can be either in SCPI (see chapter 2.2.6) or SHORT (see chapter 2.2.7)
language. You can select the language with a special command. Following you see some
complete examples from the LMG user manual. They are used to explain the syntax features
in the next chapters.

SCPI: :FETCh[:SCALar][:VOLTage]:DC?/qonly/ | :READ[:SCALar][:VOLTage]:DC?/qonly/
SHORT: UDC?/qonly/
ID: Udc

Example 2: Reading the DC voltage

SCPI :MEMory:FREeze <NRi>
SHORT: FRZ <NRi>
ID: no ID defined

Example 3: Freezing scope memory

SCPI: :*RST /nquery/
SHORT: *RST /nquery/
ID: no ID defined

Example 4: Reset of instrument

The following rules will explain all details of the above examples. If not specified otherwise,
they are valid for SCPI and SHORT commands.

2.2.1 Identification (ID)

The ID field in the above examples shows, which identifier has to be used in the formula
editor of the instrument itself. Values which cannot be used there have no ID. In general
this has nothing to do with the programming of the interface. An exception from this rule
you can find in chapter 3.4.2, ‘How to change the analogue outputs?’.

Application Note 108 Rev.1.1

12/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.2.2 Combining commands

When you combine several commands in one program message, you have to separate them
with a semicolon ‘;’.

Example
You want to combine the SHORT commands of the above ‘Example 2: Reading the DC
voltage’ and ‘Example 3: Freezing scope memory’. Then you have to input:
UDC?;FRZ 1

2.2.3 Small and capital letters

It does not matter if you send a command in lower-case or in upper-case letters to the
instrument. The execution of commands in capital letters is a little bit faster, but not much.
The reason why SCPI commands are written as a mix of small and capital letters is described
in 2.2.6.1, ‘Longer and shorter SCPI commands’.

2.2.4 Channel number (suffix)

To get the measuring values from any desired measuring channel you have to enter the so-
called suffix. If you do not enter a suffix, a value of 1 is assumed. Following you see the
‘Example 2: Reading the DC voltage’ to explain the handling of the suffix.

Reading DC voltage of channel 1
SCPI: :FETCh:SCALar:VOLTage:DC1?
SHORT: UDC1?

is equal to

SCPI: :FETCh:SCALar:VOLTage:DC?
SHORT: UDC?

Reading DC voltage of channel 2
SCPI: :FETCh:SCALar:VOLTage:DC2?
SHORT: UDC2?

The suffix has to be inserted directly after the command (without any space) and directly
before a ‘?’ (if existing, also without any space).

2.2.5 /qonly/, /nquery/ and `?`
If ‘/qonly/’ is added to a command description (see ‘Example 2: Reading the DC voltage’) it
is only possible to request a value (query only). This request is initiated by a ‘?’ after the
command or suffix (if specified). This ‘?’ has to follow without any space!

Application Note 108 Rev.1.1

13/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

A ‘/nquery/’ instead of ‘/qonly/’ indicates, that this command can only be executed. It will
not send back any reply (no query, see ‘Example 4: Reset of instrument’).

The texts ‘/qonly/’ and ‘/nquery/’ should not be sent to the instrument! Commands
without ‘/nquery/’ or ‘/qonly/’ (see ‘Example 3: Freezing scope memory’) can be set and
requested.

Example: /qonly/
:FETCh:SCALar:VOLTage:DC? ok, just reading the voltage

:FETCh:SCALar:VOLTage:DC fail! You cannot set this value

Example: /nquery/
*RST ok, force instrument to reset

*RST? fail, this command cannot return a value

Example: Neither /nquery/ nor /qonly/
:MEMory:FREeze ON ok, freeze the actual values (‘ON’ is the NRi

parameter)

:MEMory:FREeze? ok, read the actual freeze state

2.2.6 SCPI language

The SCPI commands are arranged in a tree structure. This represents a general instrument
structure like in the following figure:

Figure 1: SCPI Functional Model

Beside the structures for measuring in the picture above, the LMG instruments also have
some further structures like DISPlay, INSTrument, ...:

Application Note 108 Rev.1.1

14/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

:CALCulate

 Defines how to calculate formulas or limits

:DISPlay
 Defines display brightness and contrast
:FETCh

 Reads measuring values immediately
:FORMat

 Defines the data output format
:INITiate

 Defines when to copy or output data
:INPut

 Defines the signal coupling
:INSTrument

 Defines the measuring mode
:MEMory

 Defines the freeze of the scope data buffer
:READ

 Reads measuring values after the actual cycle
:SENSe

 Defines measuring conditions like ranges, testing times, ...
:SOURce

 Defines the outputs of the processing signal interface
:STATus

 Defines the behaviour of several internal registers
:SYSTem

 Access to error messages, system time & date, ...
:TRIGger

Commands for synchronisation and start/stop of measuring. To explain this structure
we use dummy commands instead of the real commands. They are simpler for
understanding the principle.

Application Note 108 Rev.1.1

15/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 2: General tree structure

Figure 2 shows how commands can be combined. All commands need a root (similar to the
‘C:\’ in DOS). In case of SCPI the root is a simple colon ‘:’. The first command of a transfer
does not need the ‘:’ because the first command always starts at the root.
The branches of the tree are separated by a ‘:’ (similar like the ‘\’ in DOS).

Example: Calling command A11
:A:A1:A11 with leading colon

is equal to

A:A1:A11 without leading colon

If there are several commands at one level which should be executed you can combine them
(see also 2.2.2, ‘Combining commands’). These combined commands share the same prefix
until you start again at the root. Due to this you can remove the header for the following
commands. To separate the commands you have to use the semicolon`;` as separator.

Application Note 108 Rev.1.1

16/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Example: Calling commands A11 and A12
A:A1:A11;:A:A1:A12 ok, semicolon separates the commands, second command

starts at the root

A:A1:A11;A12 ok, because the commands share the same prefix. Prior to
‘A12’ the prefix ‘A:A1:’ from the first command is placed
automatically

A:A1:A11;A:A1:A12 fail! The colon after the semicolon is missing. Therefore the
prefix ‘A:A1:’ from the first command is placed in front of the
second command which is then read as ‘A:A1:A:A1:A12’. This
command does not exist!

A:A1:A11;
A12 fail! Each new line starts at the root, so the command ‘:A12’

is searched for but not found.

As you can see there are several possibilities to send a command to the instrument.

2.2.6.1 Longer and shorter SCPI commands

There are two possible spellings in the command description for SCPI-commands, a long one
which is easier to read and a short one which is shorter and a little bit faster.

The part of the SCPI command written in capital letters is the shorter spelling (this has
nothing to do with the SHORT language of the ZES ZIMMER instruments, see 2.2.7, ‘ZES
SHORT language’). The capital and small letters together are the longer spelling.

The following example shows some of the possibilities (see ‘Example 3: Freezing scope
memory’). They are written in capital letters, but also work in small letters (see 2.2.3, ‘Small
and capital letters’).

:MEMORY:FREEZE ok, long spelling

:MEM:FRE ok, short spelling

:MEMORY:FRE ok, mix of long/short spelling in different command parts

:MEM:FREEZE ok, mix of long/short spelling in different command parts

:MEMO:FREEZE fail! neither long nor short spelling for ‘MEMory’.

2.2.6.2 Default values like [...]

The commands in square brackets are default values in the LMG instruments. It is not
necessary to enter them, but you can if you like. In ‘Example 2: Reading the DC voltage’ the
commands `:SCALar` and `:VOLTage` are default values. Please note, that the square brackets
must not be sent to the instrument. They are only in the description to mark the default
values. All the following commands do exactly the same:

Application Note 108 Rev.1.1

17/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

:FETCh:SCALar:VOLTage:DC? Including the default values

:FETCh:DC? Without both default values

:FETCh:SCALar:DC? Without the second default value

:FETCh:VOLTage:DC? Without the first default value

2.2.6.3 The `|`-Symbol (or)

The ‘|’ symbol (see ‘Example 2: Reading the DC voltage’) is equal to a logical ‘or’ function.
It is used in the LMG manuals to separate two commands which request the same value in
two different ways. In ‘Example 2: Reading the DC voltage’ the DC value of the voltage is
requested in all cases, in one case by the FETCh and in the other case by the READ command
(for differences see chapter 2.8.2; ‘:FETCh, :READ and SHORT’). To keep the explanations as
short as possible these two commands are separated by the symbol ‘|’. It is not a valid
symbol in IEEE488.2 or SCPI and should not be sent to the instrument.

2.2.7 ZES SHORT language

Beside the SCPI commands the LMG instruments from ZES ZIMMER also offer an alternative
language, which is unique for ZES products. The main advantage of this SHORT language is
that the commands are usually just 4 bytes long. So these commands can be parsed very
efficiently and the execution is much faster.

The SHORT commands have a flat structure. The lack of a tree structure is another reason for
their faster execution. The LMGs are always starting up with the SCPI command set. To use
the SHORT commands you have to change the language with the SCPI command

:SYSTem:LANGuage SHORT

To reach the SCPI language again, please enter the SHORT command

LANG SCPI

The following example shows a SCPI command and its SHORT equivalent.

Reading of DC voltage
:FETCh:SCALar:VOLTage:DC?

is equal to

UDC?

Application Note 108 Rev.1.1

18/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Please note
The SCPI commands have a shorter and a longer spelling (see 2.2.6.1, ‘Longer and shorter
SCPI commands’). None of them is comparable to the SHORT command set. This command
set is unique for ZES ZIMMER power meters.

2.2.8 Parameters

For some commands it is possible and/or necessary to add parameters. They are specified in
the syntax explanation in angle brackets. In contrast to the suffix or the question mark the
parameters have to be separated by a space. They are placed after command, suffix and ‘?’.
There are several types of parameters:

2.2.8.1 <NRi>, <NRf>

 <NRi> and <NRf> are symbols for flexible numerical formats. The `i` in <NRi> stands for
‘integer’, the ‘f’ in <NRf> for ‘float’ numbers.

The data format is very flexible, so you can send any usual format: ‘123’, ‘123.0’ or
‘+1.23e+2’ are understood as <NRf> numbers. A complete description of all possible syntax
you can find in section 4 (decimal numeric program data) in Figure 9. For <NRi> you find
the rules in section 5 (nondecimal numeric program data), section 4 (decimal numeric
program data) or section 2 (character program data) in Figure 9.

Following you find three examples which show possible numbers according to the sections
2, 4 and 5. All examples force the instrument to change into the CE measuring mode.

Calling with rules of section 4 (decimal numeric program data)
SCPI: :INSTrument:SELect 2
SHORT: MODE 2

Calling with rules of section 5 (nondecimal numeric program data)

Binary data
SCPI: :INSTrument:SELect #B10
SHORT: MODE #B10

Hex data
SCPI: :INSTrument:SELect #H2
SHORT: MODE #H2

Calling with rules of section 2 (character program data)
SCPI: :INSTrument:SELect CEFLK
SHORT: MODE CEFLK

Application Note 108 Rev.1.1

19/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

In the last example you could see that not only numbers are allowed, but also strings which
are synonymous to numbers. The following table contains all string/number combinations
which are implemented into ZES ZIMMER instruments:

String Off On
Value 0 1

String Manual Auto
Value 0 1

String INT EXT
Value 0 1

String ASCII PACKED
Value 0 1

String NORML CEHRM CEFLK HRMHUN TRANS
Value 0 1 2 3 4

String SCPI SHORT
Value 0 1

String LINE EXTS U I
Value 0 1 2 3

String ACDC BP AM
Value 0 1 2

It does not matter which string follows a command, it only has to have the same value.
Example:

:INSTrument:SELect CEFLK

is equal to

:INSTrument:SELect U

or

:INSTrument:SELect AM

Application Note 108 Rev.1.1

20/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

All these commands change to ‘CE Flicker’ mode of the instrument. But the second and
third version are worse to read and should not be used.

2.2.8.2 <list>

With the <list> parameter you can get several values with one command from a list or array.
<list> is a short form for <(<NRf>:<NRf>)>. The results are separated by comma, see
following example:

Output of AC voltage and the harmonics of order 1 to 3
You have to send (here as SHORT command):

UAC?;HUAM (1:3)?

The instrument response will be

223.45;221.75,0.3456,5.6789

The first part of the answer is the AC value of the voltage. The following semicolon
separates this answer from the second part of the request (the requests were also separated
by semicolons!). In the second part of the answer the three values are separated by comma.

2.2.8.3 <string>

This parameter is used to transfer strings. This is enclosed in quotation marks ‘ “ ‘. Inside a
string all characters are allowed, also <cr> (‘\r’), <lf> (‘\n’), <cr><lf> (‘\r\n’) and other
possible EOS signals (see 2.7.2, ‘EOS and EOI’). The quotation mark itself can be transferred
by a doubling it (‘“”’).

Caution!
If you forget the closing quotation mark all following characters (also commands, EOS, ...)
will be interpreted as part of the string. So they are not executed. This can cause the
instrument to be blocked. To solve this, you have to reset the interface part of the
instrument (see 2.5.2, ‘Resetting the LMG interface’) or send a closing quotation mark.

Examples
Following text should be transferred:

Peter said „Ok“ and vanished

The small pictures are taken from ‘Figure 9: Overview Program Data’ and explain the special
underlined situation.

“Peter said ““Ok““ and vanished“ ok, quotation mark at start and end, two
double quotation marks enclosing ‘Ok’

“Peter said ““OK““ and vanished“

Application Note 108 Rev.1.1

21/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 3: Start of string

“Peter said ““OK““ and vanished“

Figure 4: Quotation mark inside a string

“Peter said ““OK““ and vanished“

Figure 5: End of string

The following example will not work:

“Peter said “OK“ and vanished“ fail! The quotation mark after ‘said’
terminates the string!

“Peter said “OK“ and vanished“

Figure 6: Start of string

“Peter said “OK“ and vanished“

Application Note 108 Rev.1.1

22/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 7: End of string

In contrast to Figure 5 the second (single!) quotation mark terminates the message. The
instrument expects a command separator or an EOS after a string, but it gets an ‘OK“ and
vanished“’. So an error message is generated.

Another more practical example can be found in ‘Example 5: Program STRING.PY’ in chapter
2.3, ‘Response messages’.

2.2.9 Syntax diagrams

Beside the syntax rules from the previous chapters you will find in the following a complete
syntax diagram. Here you can see in detail which characters and separators are allowed at
which position. The ‘Program Data’ are excluded to Figure 9. The numbers in parentheses
reference the corresponding chapters.

Application Note 108 Rev.1.1

23/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 8: Overview Terminated Program Messages

Application Note 108 Rev.1.1

24/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 9: Overview Program Data

For example you can see in these diagrams, that a white space before a command is
allowed, but not between `:` or `*` and the command itself (see section 1, ‘Command/Query
Program Header’).

Application Note 108 Rev.1.1

25/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.3 Response messages

A response message of the instrument can be composed of several values. It is terminated
by an EOS (=end of string) symbol.

By default, numbers are returned as NR1 (integer, not to confuse with <NRi> parameters) or
NR3 (float, not to confuse with <NRf> parameters) format (see ‘Figure 10: Overview
Terminated Response Message’ for the exact syntax). Hexadecimal numeric response data
and binary response data are not delivered by the ZES LMGs. But there are two other
important data types which required some attention when programming.

In ‘definite length arbitrary block response data’ the EOS character can be included as valid
data byte. It has to be ignored in this case, because it is part of the data. A detailed
description follows in 3.2, ‘Binary answers’.

String data are in principle also ASCII data, but they can contain EOS characters between
the quotation marks. In this case the EOS code is also part of the data and not an EOS.
String data are always sent in quotation marks ‘ “ ‘, see Figure 10 section 13.
A practical example for sending and receiving a string is the formula editor of the LMG
instruments.

Example: Formula editor
Instead of entering a formula directly at the instrument it is much more comfortable to
send it by an interface command:

SCPI: :CALCulate:FORMula[:DEFine] <string>
SHORT: FORM <string>

The formula is passed inside a string (see chapter 2.2.8.3, ‘<string>’).

SCPI: :CALCulate:FORMula “a=1;b=2;c=3;“
SHORT: FORM “a=1;b=2;c=3;“

By this string the variables a, b and c get the values 1, 2 and 3. This would be displayed in
the formula editor of the instrument as

a=1;b=2;c=3;

As explained above, a `linefeed` (lf) is valid inside a string, even if EOS is also set to
linefeed. If you used this character, the formula editor in LMG would then display:

a=1;
b=2;
c=3;

which is much easier to read. This formula string can also be read back. This is done in the
following small Python example.

Application Note 108 Rev.1.1

26/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

#STRING.PY

load ZES RS232 functions
import zes

#Open the serial interface:
LMG=zes.Open("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

Write formula without linefeed to instrument
zes.Write(LMG, "CALC:FORM \"a=1;b=2;c=3;\"")
Request formula from instrument
zes.Write(LMG, "CALC:FORM?")
Read answer from instrument
answer=zes.Read(LMG)
Place answer on screen
print "Answer without linefeed and standard Read function is:\n"+answer

Write formula with linefeed to instrument
zes.Write(LMG, "CALC:FORM \"a=1;\nb=2;\nc=3;\"")

Request formula from instrument
zes.Write(LMG, "CALC:FORM?")
Read answer from instrument with standard Read function
answer=zes.Read(LMG)
Place answer on screen
print "\nAnswers with linefeed and standard Read functions are:\n"+answer
This answer has terminated at first lf, so read the other ones:
Read answer from instrument with standard Read function
answer=zes.Read(LMG)
Output answer on screen
print answer
Read answer from instrument with standard Read function
answer=zes.Read(LMG)
Place answer on screen
print answer

Request formula from instrument
zes.Write(LMG, "CALC:FORM?")
Read answer from instrument with ReadQuota function for strings
answer=zes.ReadQuota(LMG)
Place answer on screen
print "\nAnswer with linefeed and ReadQuota function for strings is:\n"+answer
Write command to instrument
zes.Write(LMG, "GTL")

Close connection
zes.Close(LMG)
print "\nProgramm finished"
Example 5: Program STRING.PY

How to start such a program and the general functions were already explained in ‘Example
1: Program HELLO.PY’. Here we explain just the new things:

Application Note 108 Rev.1.1

27/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

zes.Write(LMG, "CALC:FORM
\"a=1;b=2;c=3;\"")

Send a string to the formula editor. Please note here that you
have to send the quotation marks as part of a string. In Python
(as well as in C/C++) you have to enter them as ‘\“’ to prevent
that the quotation mark is recognised as end of text of the
zes.Write function.

zes.Write(LMG, "CALC:FORM?") Request the actual formula from the instrument.
answer=zes.Read(LMG) Read the answer from the instrument and store it in the variable

‘answer’.

print answer Output this variable on the screen.
zes.Write(LMG, "CALC:FORM
\"a=1;\nb=2;\nc=3;\"")

Here additional linefeeds are sent to the instrument. They are
entered as ‘\n’ in the source code.

answer = zes.ReadQuota(LMG)
print answer

Read the answer from the instrument and store it in the variable
‘answer’. Due to the linefeeds in the stored formula the standard
zes.Read function would terminate when the first linefeed occurs.
For this reason the function ReadQuota was used. It was
programmed according to the hints in 2.8.4.2, ‘String data’.

Syntax diagram

Beside the response message rules from the above chapters you find following a complete
syntax diagram. Here you can see in detail which characters and separators are allowed at
which position in an answer from the instrument.

Application Note 108 Rev.1.1

28/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 10: Overview Terminated Response Message

2.3.1 Invalid data, NaN

NaN, Not a Number, indicates a not defined number (e.g. not existing limit, frequency out
of range ...). When transferring binary data (see 3.2, ‘Binary answers’) there is a special
code for this value (conforming to IEEE754). Transferring in ASCII format NaN is
represented by 9.91E37 (conforming to SCPI Standard).

The LMG instruments display NaN values as ‘--------’.

Application Note 108 Rev.1.1

29/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.4 Data flow, system structure

After the explanation of the syntax of the commands and prior to the basic interface
functions this chapter should give you an overview of the complete communication system.
Here you can see, which functions in the PC/instrument are involved and which way the
data flows.

The transfer structure of the data is similar to the OSI model of usual computer networks:

Figure 11: Transfer structure

Layer 0
This lowest layer is the ‘physical layer’. It is the controller with the cables. This controller
is directly affected by universal commands (IEEE488.1) or special RS232 Commands (defined
in IEEE1428).

Layer 1
With the IEEE488.1 functions/commands the communication on the bus is controlled, e.g.
which instrument(s) is/are addressed. This communication is done automatically between
the controllers.

With addressed universal commands you communicate with one device (e.g. the command
‘SDC’ (Selected Device Clear) forces this single device to reset its interface). With non-
addressed universal commands you communicate with all devices (e.g. the command `DCL`
(Device Clear) forces all instruments to reset their interface).

IEEE1428 tries to simulate some of the IEEE488.1 commands. This is not completely
possible, because there are too few control signals. But an important example is the `Break`
of RS232 which is equal to the `SDC` command of IEEE488.1.

Layer 2
In this layer you find the IEEE488.2, SCPI and SHORT commands.
The IEEE488.2 common commands are always addressed commands. They start with a `*`,
followed by three letters and sometimes a ‘?’ question mark. In case of the ‘?’ an answer
from the instrument is expected (for details please see chapter 2.2, ‘Program messages’). By

Application Note 108 Rev.1.1

30/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

this all typical functions of an instrument are defined like `*IDN?` for identifying a device
or `*RST` for resetting.

The SCPI and SHORT commands are device specific commands. They are used for setting up
the instrument, requesting measuring values, ...

Layer 3
This is the software application itself (e.g. a terminal program or the program you are
writing). This program is connected to layer 2 and layer 1. So it is the control centre for all
functions. The program can execute all three types of commands:

• universal commands

• common commands

• device specific commands

The IEEE488 bus (as a point to point connection) and the RS232 have a nearly identical
system overview. It is shown in Figure 12. The FIFOs 1-3 and 6-8 can be implemented
optionally. Further on their size can vary greatly.

FIFOs 4 and 5 as well as the queues are implemented in the LMG instruments. Some
instruments from other manufacturers have them implemented only partially or not at all.

The following example shows the typical data path from command to response, see also
Figure 12.

Reading the AC voltage from the instrument
After the SHORT commands
INIM;UAC?

(INIM is the SHORT command for :INITiate:IMMediate. Further details follow in chapter
2.8.1.1, ‘:INITiate:IMMediate and INIM’) have run through the FIFOs 1-3 they are
transferred over the cable and stored in the input queue. The parser analyses the commands
for correct syntax, parameters and so on. If the commands are valid, internal commands are
generated and stored in FIFO 4. The execution unit forces the measuring unit to wait until
the end of the currently running cycle (by the INIM command) and then to copy the
measuring values into the interface buffer. The `Device Function` then takes the value of
the AC voltage out of the interface buffer and stores it in FIFO 5. The response formatter
converts this number into a format which can be read by the PC (usually ASCII). This data
are now transferred to the output queue. Then the information is transferred via the cable
and the FIFOs 6-8 into the program for further evaluation.

Application Note 108 Rev.1.1

31/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 12: System overview of data flow

Application Note 108 Rev.1.1

32/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

In Figure 12 the universal commands are grouped in a grey box. As described in chapter 2.1
they are not usual ASCII commands but are transferred via special states of the wires
directly into the interface controllers. So they bypass all FIFOs! Keep this in mind, it is very
important later on.

If for example the data flow is blocked by a wrong command it would be impossible to reset
the instrument with any other command, because it would never reach the execution unit.
But the universal commands are directly sent to the controller and can force the instrument
to reset its interface.

The different units in the diagram above have their reset command in parenthesis. Some are
universal commands (e.g. device clear), some are common commands (e.g. *RST). How to
handle these commands and which sequence is important is explained in chapter 2.5,
‘Opening the interface’.

2.5 Opening the interface

Before you have contact to the instrument, you have to decide, which interface you want to
use: IEEE488 or RS232. This information is necessary in the LMG as well as in the PC. Both
have to open the correct interface with corresponding parameters.

For opening you need some other information like baud rate, EOS for RS232 or instrument
address for IEEE488. These parameters have to be set-up in the same way in PC and LMG.

Before starting the communication, it is strongly recommended to reset and initialise all
data paths and the instrument itself (see following chapters).

The reset forces the affected unit to go into a defined state and to clear the buffers, queues
and memories.

To reset the complete data path from the PC to the LMG (and back!) you have to reset
different units in a defined sequence. This is described below.

Hint
Use the RTS/CTS protocol with RS232 interface. Then you have maximum safety for your
data transfer. Most modern PCs (Windows as well as Linux based) are not real time systems.
That means they can be blocked for such a long time, that the hardware FIFO input buffer
can overflow. RTS/CTS protocol helps to minimise this problem.

2.5.1 Deleting the PC’s output buffer

First you have to clear the output buffers of the PC for the case that they already contain
any data. In detail these are the FIFOs 1-3. They are part of the used software, operating
system, drivers and the IEEE488/RS232 controller itself.

They have to be deleted in the sequence of the normal data flow. This is very important to
guarantee that there are really no old data left in the system. If you for example delete
FIFO3 before FIFO2 some data could reach FIFO3 after deleting and that would cause

Application Note 108 Rev.1.1

33/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

problems. This guarantees that an already reset unit does not become active until the
programmer wants it.

To delete in the sequence of normal data flow is a general task when programming.

If you do not follow the correct sequence, the following can happen:

• Old data are interpreted as new data

• Commands seem to be misspelled and are rejected due to wrong characters in front of
them

• Old commands are interpreted as new commands

• ...

2.5.2 Resetting the LMG interface

Next you have to reset the FIFO 4 and 5 as well as all units of the LMG interface with the
`device clear` command (IEEE488) or `break` command (RS232).

These are universal commands. So they can bypass the usual data path and be received
directly from the LMG. Internally the resetting and deleting of FIFOs is done in the usual
way: Deleting input queue, resetting parser,

Additionally to the above action the following will happen:

• If you are in continuous mode (advanced topic, see 3.1.2, ‘Continuous mode’), it will be
stopped.

• If you are using the SHORT language, the language will change back to SCPI.

2.5.3 Deleting the PC’s input buffer

One step which is often forgotten: Delete the input buffers of your PC!

In detail these are FIFOs 6 (IEEE488/RS232 Controller), 7 (OS or driver) and 8 (software).
Take care to use the correct sequence here, too.

Now the complete data path is clear and ready for usual commands.

2.5.4 Resetting register structure and error queue

With the common command `*CLS` (Clear Status) the event register of all register structures
is reset. Furthermore the error queue is cleared.

We recommend using this command even if it is not necessary. In case you use it, you can
be sure, that all errors in the error queue which occur later on are caused by your program.
This helps you to find the cause of the errors.

Application Note 108 Rev.1.1

34/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

The register structure is an advanced topic and explained in 3.3, ‘Control structures’

2.5.5 Resetting the measuring unit

Until now we have just reset and initialised the interface part of the instrument. The
measuring unit itself is unchanged. So all measuring ranges, scalings, ... are unchanged
until now.

As a last step we recommend to reset the measuring unit itself. This is done by the common
command `*RST` (reset). This command is applied only to the measuring unit and does not
influence any part of the interface.

What is the advantage of resetting the measuring unit? Let us assume that you just want to
measure the voltage in the 6V range. So you initialise the instrument (without sending
‘*RST’), change to the 6V range and request the voltage. This can work, but not necessarily.
If someone has manually changed the scaling you will get a wrong value. So you also would
have to set the scaling, too. Then you should set the filters, too, and in principle all other
parameters of the instrument just to be sure to know their setting. It is unknown how the
LMG was set up previously.

With ‘*RST’ you are in a defined setting. Now you only have to change the values which are
different from this defined setting. This is very simple, you do not have to send many
commands and you can be sure not to have forgotten any parameter.

As told above this is just a recommendation.

2.5.6 Python Example

In the above Python programs we only used the ‘zes.Open’ function to open and initialise
the interface. This was sufficient for the simple examples, but in general an initialisation
should look like this:

OPEN.PY

load ZES RS232 functions
import zes

load funtion Write_command_with_opc
import writeopc

def init(port, parameter):
 # Open the interface, clear output buffers
 handle=zes.Open(port, parameter)

 # Initialize the interface of the instrument
 # send ‘break’ if RS232 interface
 zes.Reset(handle)

 # Delete the input buffers of the PC
 zes.EraseBuffer(handle)

Application Note 108 Rev.1.1

35/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

 # Reset register structure and error queue
 writeopc.Write_command_with_OPC(handle, "*CLS")

 # *RST could take some time for execution, so the timeout
 # is increased
 zes.SetTimeout(handle, 1000)
 # Reset the measuring unit
 writeopc.Write_command_with_OPC(handle, "*RST")
 # Reduce again to standard value
 zes.SetTimeout(handle, 500)

 return handle

Example 6: Program OPEN.PY

Here we wrote a function which takes as parameters the port and its parameters. The handle
to the opened communication port is returned. This function cannot be executed
standalone. It will be used later on (e.g. in ‘Example 10: Program OPC.PY’).

2.6 Closing the interface

Before you close the connection to the instrument you should

• Leave the continuous mode (advanced topic, see 3.1.2, ‘Continuous mode’), if you use
it.

• Read out all unread data from the instrument or reset the interface (see 2.5.2, ‘Resetting
the LMG interface’).

• Clear the PC’s input buffer (see 2.5.3, ‘Deleting the PC’s input buffer’).
• Request all error messages with the :SYSTem:ERRor:ALL? (SCPI) or ERRALL? (SHORT)

command. If you have cleared the error queue (see chapter 2.5.4, ‘Resetting register
structure and error queue`) all displayed error messages were caused by your program. Do
this even if your program seems to work correctly! Try to find the cause of any shown
error message.

• Set the instrument back to ‘local’ state so a user can work with it. To do this you can
use the IEEE488.1 universal command ‘go to local’ or the RS232 command ‘GTL’. Take
care that this is the last command, else the instrument will change back to remote mode.

2.6.1 Python Example

In the above Python programs we used just the ‘zes.Close’ function to close the interface.
This was sufficient for the simple examples, but in general a closing should look like this:

Application Note 108 Rev.1.1

36/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

CLOSE.PY

load ZES RS232 functions
import zes

def close(handle):
 # Initialize the interface of the instrument.
 # By this the continuous mode (if used) is stopped
 # and all buffers in the LMG are cleared.
 # Further on the language is changed back to SCPI
 zes.Reset(handle)

 # Delete the input buffers of the PC
 zes.EraseBuffer(handle)

 # Request the error messages.
 zes.Write(handle, "SYST:ERR:ALL?")

 # Read in the error messages
 error = zes.Read(handle)
 # check if any error occured
 if error != "0,\"No error\"":
 # output them on the screen
 print "Instrument sent following error message(s):\n" + error

 # Change back to local mode
 zes.Write(handle, "GTL")

 # Close the device
 zes.Close(handle)

Example 7: Program CLOSE.PY

Here we wrote a function which takes the handle as parameter. This function cannot be
executed standalone. It will be used later on (e.g. in ‘Example 10: Program OPC.PY’).

2.7 Writing to the interface

If the interface is open and you send the first byte to the LMG, it changes to the `remote`
state. Now you cannot change any parameters at the LMG itself but only via the interface.
This is to prevent double entries at the same time and to protect the software from
unexpected changes in the instrument set-up.

The write function to the instrument can be realised in two very common ways:

• Most write functions work with the so called ASCII-Z format (Z=Zero). These expect the
start address of the data to be sent as input. This routine sends out data until the
character with the value 0h (not ‘0’=30h!) is reached. Then the function returns. This

Application Note 108 Rev.1.1

37/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

kind of function is easy to handle, because you do not need to care about the length.
The disadvantage is that you cannot send a zero character.

• Some write functions require the starting address and length of the data to be sent. This
routine then sends exactly this data without any interpretation. This type of functions is
more complex to handle because the programmer has to determine the length of the
data. The advantage is that you can send every byte to the instrument that you want,
including a 0h.

For convenience and safety each method should automatically add the EOS character at the
end.

Hints
1. The LMG instruments use only ASCII data as input. So no zero character is necessary and

you can use a write function of the first type with ASCII-Z format.
2. In most cases it is a good solution, if the write function adds the EOS (and EOI)

automatically (see 2.7.2, ‘EOS and EOI’). If your write function does not do this
automatically, write your own!

3. Do not use the EOS character to detect the end of a message (see 2.7.2, ‘EOS and EOI’)!

2.7.1 Data format

The LMG instruments use only ASCII data as input (see 2.2, ‘Program messages’). Only the
data output can include binary data, see 3.2, ‘Binary answers’.

2.7.2 EOS and EOI

To terminate a data transfer you have to send the EOS (end of string) character.

IEEE488
Additionally to the EOS character IEEE488 transfers the EOI (end of identification) signal.
The EOS is always set to <lf>.

RS232
RS232 can use several types of EOS:
• <lf> (linefeed, 0Ah)

• <cr> (carriage return, 0Dh)

• <cr><lf> (0Dh 0Ah)

You have to decide which type you want to use.

Application Note 108 Rev.1.1

38/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Caution
The EOS code can be the end of a message, but does not have to be. Let us assume you
want to transfer a string to the instrument (see 2.2.8.3, ‘<string>’). Inside the quotation
marks you are allowed to send every character, even the EOS! So when using the IEEE488
interface make sure that your write function does not set EOI when it detects any possible
EOS character, but only when it detects an EOS which has the meaning of EOS!
Of course the LMG instruments also detect only real EOS characters as EOS but no EOS
characters inside a string! So you can send every character inside a string.

Hint
1. When using RS232 use <lf> as EOS, too. The other possibilities exist only for

compatibility with very old computer systems or terminals.
2. Use a write function which adds the EOS (and EOI at IEEE488) automatically. So it

cannot be forgotten.

2.7.3 Timeout

RS232 as well as IEEE488 interfaces use a so called timeout (RS232 only if RTS/CTS protocol
is used). It is used to detect if the write function blocks too long and terminates it with an
error message. For example you want to send some data to the instrument but it cannot
receive them for any reason (cable is not plugged in, ...). In this case a write function
without timeout would wait forever and the PC program would hang.

To solve this problem a write function with timeout should be used. If the instrument does
not receive the data in a usual time, an error message is generated and the function is left.
Then you can try to initialise the interface of the instrument again (see 2.5.2, ‘Resetting
the LMG interface’. Due to the fact that universal commands are used here a pure transfer
problem can be solved (grey path in ‘Figure 12’). These functions should use a timeout,
too. If this also fails, you have to check the hardware connections and/or the settings in
your program and of the LMG.

Example
Assume you have a cycle time of 10s. Then due to a program failure you send a
`INIM;UTRMS?` (SHORT) command to the LMG every 100ms. So after a 100 requests the first
one is answered, after another 100 the second one and so on. The FIFO 4-1 will overflow
after a while and the data transfer to the instrument is blocked. With a timeout, you can
reset the instrument and search for the cause. Without a timeout your program is blocked.

Recommendation
1. Use a timeout when sending data. If it fails there is a problem with the program or the

instrument.
2. To minimise programming effort, you can write your own write function which supervises

the timeout and generates a correct error message in case that it happens.

Application Note 108 Rev.1.1

39/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.7.4 Usage of ‘*OPC?’

The commands are executed in the sequence you send them. If you first change a range
(long execution time) and then request a value (short execution time) you can be sure, that
the request of the value is not executed before the range has been changed.

If you try to change all voltage and current ranges in one message and then immediately
request a value, this can take much more time than expected (one cycle, see chapter
2.8.1.1, ‘:INITiate:IMMediate and INIM’). By this it can happen that you run into a timeout
when reading the request.

A solution could be the `*OPC?` common command. This command returns a simple ‘1’ when
it is executed. So if you split several commands with longer execution time into several
messages, add a ‘;*OPC?’ to each message and wait after each message until the ‘1’ is
returned you should have no problems. The following example (SHORT commands, for
LMG450) changes the mode of the ranges to ‘manual’:

IAM1 0;IAM2 0;IAM3 0;*OPC?

By this you wait for the execution of the few commands and the execution times of all
commands are not added. You can work with a usual short timeout.

Hint
You can write your own `Write_with_OPC` function which automatically adds the ‘;*OPC?’
and waits until the ‘1’ is returned:

WRITEOPC.PY

#load ZES RS232 functions
import zes

Function Write_command_with_OPC
This function sends a command to the instrument, adds an
';*OPC?' to this command and waits, until the instrument answers
with a '1'.

def Write_command_with_OPC(instrument, text):
 zes.Write(instrument, text+";*OPC?")
 answer = ""
 while answer != "1":
 answer = zes.Read(instrument)

End of function

Example 8: Program WRITEOPC.PY

In this example the bare function is realised without any timeout supervision.

Application Note 108 Rev.1.1

40/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

This small function, together with the above developed small ones (see ‘Example 6: Program
OPEN.PY’ and ‘Example 7: Program CLOSE.PY’) are combined in a tools collection:

G_TOOL.PY

execfile ("open.py")

execfile ("close.py")

execfile ("writeopc.py")

Example 9: Program G_TOOL.PY

This tools collection is used in the next example to synchronize the program exactly. In this
case a beep is played by the LMG when the change of the command language has been
successfully performed.

OPC.PY

load ZES RS232 functions
import zes

load tool collection of programmer's guide
import g_tool

Open the serial interface, clear output buffer,
initialize data path and instrument.
LMG=g_tool.init("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

Change to SHORT language
g_tool.Write_command_with_OPC(LMG, "SYST:LANG SHORT")
Let the instrument beep
g_tool.Write_command_with_OPC(LMG, "BEEP")

Close the interface. It is assumed, that the handle of the LMG
instrument is called ‘LMG’ and the RS232 interface is used.
g_tool.close(LMG)
print "Programm finished"

Example 10: Program OPC.PY

Note
The above Write_command_with_OPC function cannot be used when you request any values.
It would wait until a ‘1’ return which might never happen. This function should only be
used when sending commands without answer.

Application Note 108 Rev.1.1

41/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.7.4.1 Command sequence

As told above, the usual common and device specific commands are executed in the order
they are sent to the instrument. But universal commands can overtake them. Take a look at
the next example which demonstrates the problem:

TEST.PY

load ZES RS232 functions
import zes

load tool collection of programmer's guide
import g_tool

Open the serial interface, clear output buffer,
initialize data path and instrument.
LMG=g_tool.init("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

zes.Write(LMG, "hello")

Close the interface. It is assumed, that the handle of the LMG
instrument is called ‘LMG’ and the RS232 interface is used.
g_tool.close(LMG)
print "\nProgramm finished"

Example 11: Program SEQ1.PY

After opening the interface the (non-existing!) command ‘hello?’ is sent to the instrument.
The close.shutdown function (see ‘Example 7: Program CLOSE.PY’) should not output an
error message. But if your computer is not a very slow one you will get no error message.
The reason is, that the first command in ‘Example 7: Program CLOSE.PY’ is a universal
command. This is executed so fast after the wrong command ‘hello’ has been sent, that the
input buffer of the instrument is deleted before the command was parsed and the error
detected (see also ‘Figure 12: System overview of data flow’).

There are two solutions:

• You wait for a certain time after sending ‘hello’ to be sure it was ‘executed’ which
means in this case the error was detected. But delays in a program are always a bad
solution, because the required duration of the timeouts could change and this would
cause trouble.

• The other way is to get a notification from the LMG, when a command has been finished:
2.7.4, ‘Usage of ‘*OPC?’’

The following example uses the last method:

Application Note 108 Rev.1.1

42/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

SEQ2.PY

load ZES RS232 functions
import zes

load tool collection of programmer's guide
import g_tool

Open the serial interface, clear output buffer,
initialize data path and instrument.
LMG=g_tool.init("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

g_tool.Write_command_with_OPC(LMG, "hello")

Close the interface. It is assumed, that the handle of the LMG
instrument is called ‘LMG’ and the RS232 interface is used.
g_tool.close(LMG)
print "Programm finished"

Example 12: Program SEQ2.PY

Here the program execution continues at once after the ‘1’ was received. By this you can be
sure that the wrong command has been executed.

Of course similar problems could also happen with valid commands!

2.8 Reading from the interface

You can only read from the interface, if you have requested values from the instrument. The
instrument will usually not deliver data on itself (for the single exception see 3.1.2,
‘Continuous mode’) but only on a single request.
The time from your request to the delivery of the data can vary a lot, depending on your
request method (see 2.8.1, ‘Single request’).

Usually it is not a good idea to enter the read function directly after the request. The
reasons are:

• Usually you have a timeout of 0.5s (see also 2.8.3, ‘Timeout’). If an answer takes 3s (see
example in 2.8.1.1, ‘:INITiate:IMMediate and INIM’), the read function will return with a
timeout error. To solve the problem you have several possibilities: Extend the timeout or
check if the instrument wants to send data (see below)

• Depending on how the read function is implemented on your computer, the system is
blocked, while you are in this function. A graphical interface is not useable during this

Application Note 108 Rev.1.1

43/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

time! To prevent this problem, use a non-blocking ‘read’ function or check if the
instrument wants to send data (see below).

Checking if instrument could send data
To check if you can enter the read function you should

• check (only possible if using IEEE488) the MAV (message available) bit by serial polling
(universal command, can be executed anytime) before entering the read function (see
3.3.1, ‘Status Byte Register’) or

• check (only possible if using RS232) if there are any bytes coming from the instrument
into the PC’s input buffer before entering the read function

2.8.1 Single request

When using a single request, the measuring data are only copied to the interface buffer (see
Figure 12) when this is forced by the programmer. When a copy is forced, all measuring
values are copied. This has some advantages and consequences:

• All values were measured in the same cycle, so they physically belong together.

• You control when the interface buffer is updated. So you have as much time as you want
to read out the values. They remain there unchanged.

• If you forget to copy the values, you will read old values! Avoid this.

2.8.1.1 :INITiate:IMMediate and INIM

‘INIM’ is the SHORT command for the SCPI command `:INITiate:IMMediate`. This command
forces the instrument to wait until the end of the actual cycle and then copy all measuring
data into the interface buffer (see Figure 12).

The values are copied at the end of a cycle. In the worst case (when you send the command
at the begin of a cycle) it can take up to a complete cycle time until the values are copied
(at 3s cycle time it can take 3s ±some milliseconds!). If you sent the command and then
immediately entered the ‘read’ function to get data from the interface this function would
also take up to 3s. This can cause several problems. Some strategies for solving these
problems where shown above.

Please send only one INIM per message to the instrument. Send a second one not before
the first one is finished.

Application Note 108 Rev.1.1

44/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

2.8.1.2 :INITiate:COPY and COPY

If you need the last measuring values before the actual cycle, you can force the instrument
to copy the values immediately with the ‘COPY’ (SHORT) or `:INITiate:COPY` (SCPI)
command.

2.8.2 :FETCh, :READ and SHORT commands

The two branches of the SCPI tree are used to read out measuring values. The difference is
that ‘:FETCh’ will read data from the current interface buffer (without copying). ‘:READ’ waits
until the end of the currently running cycle, copies new data to the interface buffer and
reads then data from the new buffer. So ‘:READ’ is a combination of the
‘:INITiate:IMMediate’ (see 2.8.1.1) and the ‘:FETCh’ command.
If you request the same value twice with two :FETCh commands you get the same values of
the same cycle, because the interface buffer did not change. For example:

FETC:DC?;:FETC:DC? would not make any sense, because you would get the same value twice.

If you request the same value twice with two :READ commands (e.g. :READ:DC?;:READ:DC?)
you get two different values of two different cycles. This can cause problems for example
with following request:

:READ:VOLTAGE:DC?;:READ:CURRENT:DC?
The two values you get for Udc and Idc are measured in different cycles!

A usual request looks like this:
:READ:VOLTAGE:DC?;:FETC:CURRENT:DC?
In this case the instrument finishes the current cycle, copies the values for the interface
and returns the two requested values. These two values are measured in the same cycle!

SHORT Commands
The SHORT commands perform equal to the ‘:FETCh’ commands (which means there is no
‘INIM’ (see 2.8.1.1) performed!). So if you want to perform the last example with SHORT
commands you have to enter
INIM;UDC?;IDC?

Everything explained above is demonstrated in the following example. Please connect a
voltage and current to the channel 1 of your instrument and start the program.

GET_DATA.PY

load ZES RS232 functions
import zes

load tool collection of programmer's guide
import g_tool

Open the serial interface, clear output buffer,
initialize data path and instrument.

Application Note 108 Rev.1.1

45/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

LMG=g_tool.init("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

Extend timeout to 2000ms
zes.SetTimeout(LMG,2000)
Skip first measuring cycle after reset, it could contain
invalid values
g_tool.Write_command_with_OPC(LMG, ":INIT:IMM")

print "\nIdentical values from same cycle"
print ":FETC:TRMS?;:FETC:TRMS? -> ",
zes.Write(LMG, ":FETC:TRMS?;:FETC:TRMS?")
print zes.Read(LMG)

print "\nDifferent values from different cycles"
print ":READ:TRMS?;:READ:TRMS? -> ",
zes.Write(LMG, ":READ:TRMS?;:READ:TRMS?")
print zes.Read(LMG)

print "\nValues from different cycles"
print ":READ:VOLTAGE:TRMS?;:READ:CURRENT:TRMS? -> ",
zes.Write(LMG, ":READ:VOLTAGE:TRMS?;:READ:CURRENT:TRMS?")
print zes.Read(LMG)

print "\nValues from same cycles"
print ":READ:VOLTAGE:TRMS?;:FETC:CURRENT:TRMS? -> ",
zes.Write(LMG, ":READ:VOLTAGE:TRMS?;:FETC:CURRENT:TRMS?")
print zes.Read(LMG)

g_tool.Write_command_with_OPC(LMG, ":SYST:LANG SHORT")
print "\nValues from same cycles, SHORT language"
print "INIM;UTRMS?;ITRMS? -> ",
zes.Write(LMG, "INIM;UTRMS?;ITRMS?")
print zes.Read(LMG)

Close the interface. It is assumed, that the handle of the LMG
instrument is called ‘LMG’ and the RS232 interface is used.
g_tool.close(LMG)
print "\nProgramm finished"

Example 13: Program GET_DATA.PY

2.8.3 Timeout

There are two possible places for a timeout control:
• While reading the data itself. This timeout can be programmed with a fixed time, when it

is used after checking the MAV bit. A usual value here is 0.5s.

• While checking the MAV bit (IEEE488) or if data are in the input buffer (RS232).
The timeout for this check should depend on the cycle time, for example 1.5 times longer
than the cycle time.

Application Note 108 Rev.1.1

46/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Example
You send a message to the instrument, that you want to read a value. The cycle time is
assumed to be 5s, the timeout for the read function is 0.5s. In this case the timeout for
checking the MAV bit should be set to at least 7.5s.

2.8.4 EOS and EOI

At the end of a data transfer the LMG adds the EOS (end of string) to the message. When
using IEEE488 the EOI signal is set, too.

When you get pure ASCII data from the LMG it might be sufficient to check for EOS to
terminate a received message. But there are also other output formats which can contain
the EOS as valid character (see chapter 2.2.8.3, ‘<string>’ and 2.8.4.1, ‘Binary data’). With
IEEE488 you can check for EOI instead of EOS, but with RS232 you have to watch the
received data very carefully.

If possible, try not to mix different data types in one request like in the following (SHORT)
example

UTRMS?;FORM?

By this you request the TRMS value of voltage as number in ASCII format and the current
formula as string. The answers are just separated by a semicolon and are difficult to
interpret.

It is simpler to write two read functions, one for numbers and one for strings. Then you call
the required one. The two separate requests should then look like:

UTRMS?
FORM?

2.8.4.1 Binary data

The format of the binary data is described in chapter 3.2, ‘Binary answers’. If you receive
binary data, your read function must not stop if receiving an EOS, but it must check if this
EOS is inside a binary block (then it has to be ignored) or if it is outside (then it is a real
EOS). With IEEE488 it is sufficient to wait for EOI. With RS232 you will have to interpret the
received data. Then count how many binary data follow and for this number of bytes you
have to deactivate EOS checking.

2.8.4.2 String data

If you receive string data you have to work in a similar way as with binary data. Your read
function must not stop when it is receiving an EOS, but it must check if this EOS is inside
the string (then it has to be ignored) or if it is outside (then it is a real EOS). With IEEE488
it is sufficient to wait for EOI. With RS232 you will have to interpret the received data. The
string is between a starting and an ending quotation mark (see also paragraph 13 in Figure

Application Note 108 Rev.1.1

47/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

10). A quotation mark inside a string is defined as a double quotation mark. While inside
the string you have to deactivate EOS checking!

2.8.5 Buffer and real time

In general the LMG instruments are real-time instruments. They measure without any gaps
and also have to send without any gaps. But in a typical environment this is impossible and
the instruments therefore have implemented buffers to prevent data losses if a PC needs a
microsecond. But a FIFO can only work, if the average data output is at least as fast as the
average data input. If this is not true, the FIFO will overflow sooner or later depending on
the size.

So please take care, that you request only as many data as the interface can handle and
your PC can retrieve in a certain time. If you request more data the FIFO will overrun after a
while.

Especially when using the continuous mode (see chapter 3.1.2, ‘Continuous mode’) it can
happen with a slow computer (or a slow interface like RS232) that you get a buffer overrun.
In a real-time system each part of the chain has to support real time!

3 Advanced programming

3.1 Automatic request

In opposite to the single request (see 2.8.1, ‘Single request’) you have the possibility to let
the LMG

• copy all values automatically to the interface buffer after a cycle

• send a selection of them to the response formatter

• output them without an explicit request

This is done in the so called continuous mode. First you have to select with the
`:TRIGger:ACTion` (SCPI) command, which values should be output. Then you enter the
continuous mode with the ‘:INITiate:CONTinuous ON’ (SCPI) command. Starting from now,
all requested values are output automatically after the end of a measuring cycle. You do not
have to send any messages to the instrument.

The advantages of this method are:

• You do not have to send the same requests to the instrument again and again. The data
path can be used for the interesting measuring data. That saves a lot of transfer
capabilities and time in the PC (for sending) as well as in the LMG (for parsing).

• You never miss any data by a request coming too late from the PC.

Application Note 108 Rev.1.1

48/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

• In combination with the binary data output (see 3.2) you get a highly efficient system.

3.1.1 :TRIGger:ACTion and ACTN

The ‘:TRIGger:ACTion’ (SCPI) or ‘ACTN’ (SHORT) command selects the values which should
be output when the continuous mode is active and a cycle has finished. All commands
behind the semicolon ‘;’ after the ‘action’ command until the end of the message are
stored in the action buffer (see Figure 12). When a cycle is finished, the measuring values
are copied to the interface buffer and the execution unit executes the commands which are
stored in the action buffer.

Example
SCPI: :TRIGger:ACTion;:FETCh:VOLTage:TRMS?;:FETCh:CURRent:TRMS?

SHORT: ACTN;UTRMS?;ITRMS?

These commands define, that the TRMS values of voltage and current will be output after
each cycle.

Note!
Do not use any ‘INIM’ (SHORT) or ‘:READ’ (SCPI) commands after the action command. The
data are copied automatically.

3.1.2 Continuous mode

The syntax to enter and leave the continuous mode is `INITiate:CONTinous <NRi>` (SCPI) or
`CONT <NRi>` (SHORT).

Using `CONT 1` enters the mode, `CONT 0` leaves it. For better readability you can also write
`CONT ON` and `CONT OFF`. The continuous mode is also stopped when sending a break
(RS232) or interface clear (IEEE488).

Hint
Do not forget to leave this mode, when your program has finished. Otherwise the
instrument will continue to output data. This could cause problems with initialization when
starting a new program (see also 2.5.2, ‘Resetting the LMG interface’).

Recommendation
If you send `CONT OFF` at the end of a cycle it is possible, that the commands in the action
buffer are executed before the CONT OFF is executed. So you will have data in the output
queue. Make sure, that there are no data from FIFO 5 up to your program. If you forget to
read out or clear all buffers it can happen that you get old data after your next request!

Application Note 108 Rev.1.1

49/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

3.2 Binary answers

Binary data are defined in section 14, `definite length arbitrary block response data` in
Figure 10. The output starts always with a `#`. The following single digit defines the number
of digits which define the length of the following data. For example ‘#500012` means the
following:

Binary message
5 The following 5 digits define the length of the following data
00012 After these 5 digits, which define the length of the binary data, 12 data bytes

follow. If there is an EOS character inside these 12 bytes it has to be ignored!

The main advantages of binary data transfer are:

• Less bytes per value. Due to the header (#5000...) this advantage comes into effect if
you transfer more than one value. This is much faster in transfer. For example a float
number will be transferred in binary as 4 bytes. As ASCII (e.g. 1.23456e+7) it would be
10 bytes and more.

• The numbers do not have to be converted from internal binary format to ASCII format in
the LMG and at the PC you do not have to do the opposite operation. This is much faster.
Further on the accuracy of these numbers is a little bit better. The four byte binary
numbers have a resolution of about 8-9 digits, the ASCII data just 5-6 digits.

• The data can be read directly into a ‘struct’ if you are programming for example in
C/C++. This is very fast and efficient. You do not have to copy the values.

• All numerical values of the LMG instruments are transferred as long or float numbers, so
they always have 4 bytes.

• In combination with the automatic request (see 3.1) you get a highly efficient system.

The next byte after a block of binary data is either an ‘#’ to start a new block or an EOS.

Please note
A number of binary data can be separated into several blocks and transferred. In this case
the next byte after a block is the start of a new block ‘#’. All this data together are the
answer of one request. Several messages (each ending with EOS) are answered separately
(each ending with EOS). Example:
#500008xxxxxxxx could also be send as #500005xxxxx#500003xxx.

Further hints for writing a read function for binary data you can find in 2.8.4.1, ‘Binary
data’.

To switch from standard ASCII answers to binary answers you have to use the commands

Application Note 108 Rev.1.1

50/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

SCPI: :FORMat:DATA <NRi>

SHORT: FRMT <NRi>

So with FRMT PACKED you enable the binary output, with FRMT ASCII you switch back to
standard output.

Note
When resetting the interface of the instrument (see 2.5.2, ‘Resetting the LMG interface’)
the output format changes back to ASCII.
The following example shows, how simple it is to handle binary data in python:

BINARY.PY

load ZES RS232 functions
import zes

load tool collection of programmer's guide
import g_tool

load function to handle binary lists
import struct

Open the serial interface, clear output buffer,
initialize data path and instrument.
LMG=g_tool.init("COM1", "BAUD=38400 EOS=LF PROTO=RTS/CTS")

Change language to SHORT
g_tool.Write_command_with_OPC(LMG, "SYST:LANG ZES")

Skip first measuring cycle after reset, it could contain
invalid values
g_tool.Write_command_with_OPC(LMG, "INIM")

zes.SetTimeout(LMG, 1000)

zes.Write(LMG, "INIM;UTRMS?;ITRMS?;P?")

Read data as ASCII
answer = zes.Read(LMG)
print "The ASCII answer:"
print answer

Change to binary data output
zes.Write(LMG, "FRMT PACKED")
Request same values from SAME interface buffer
zes.Write(LMG, "UTRMS?;ITRMS?;P?")
Read data as Binary
answer = zes.ReadBinary(LMG)
Interpret them as a list of 3 float numbers
a = struct.unpack('fff', answer[0:12])
print "\nThe converted binary answers"
output 1st element
print a[0]

Application Note 108 Rev.1.1

51/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

output 2nd element
print a[1]
output 3rd element
print a[2]

Close the interface. It is assumed, that the handle of the LMG
instrument is called ‘LMG’ and the RS232 interface is used.
g_tool.close(LMG)
print "\nProgramm finished"

Example 14: Program BINARY.PY

3.3 Control structures

In this chapter we describe the connections and functions of the control structure. It
consists of a register structure and several queues. This structure is used for supervising the
instruments. It represents errors and current states of the instrument. Figure 13 shows the
complete structure.

Application Note 108 Rev.1.1

52/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 13: Control Structure Overview

Application Note 108 Rev.1.1

53/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

The centre of the total control structure is the status byte register (STB) which collects the
states of all other registers and queues. Using the IEEE488 interface you can request the
content of the STB via universal commands (layer 1). So you can get its value at any desired
time.

3.3.1 Status Byte Register

The status byte register collects different states of the instrument. It is not possible to
write into this register.

One of the most important bits (when transferring via IEEE488) is the ‘MAV’ (bit 4). This bit
is part of the handshake, if you use serial poll of IEEE488 (see chapter 2.8, ‘Reading from
the interface’). Instead of from layer 1 you can access it also from layer 3 with the common
command `*STB?`. For RS232 communication this is the only way to get its content, but in
this case the MAV bit will always be set.

The bits of the status byte register
Bit 0/1: These bits can be used for any purpose. They are unused in the ZES instruments

(SCPI definition).
Bit 2: Query error bit (QYE). If this bit is set one or more error messages are available in

the event / error queue (SCPI definition).
Bit 3: The set QUES bit indicates that the summary message of the questionable status

register is set. So there is information about questionable measuring values inside
it (SCPI definition). LMG95(e), LMG450 and LMG500 do not output questionable
data, so this is never set.

Bit 4: If the MAV (message available) bit is set, you can get information from the output
queue. This bit should be checked before you read from the IEEE488 bus to prevent
timeouts (IEEE definition).

Bit 5: The set ESB (event status bit) indicates that the summary message of the standard
event register is set. So there is information inside (IEEE definition).

Bit 6: This bit is different, depending on the way you request it:
If requested via the common command ‘*STB?’, the MSS (master summary status)
bit is returned. The MSS bit indicates that the summary message of the status byte
register is set. So there is information inside.
If requested via a serial poll (only with IEEE488, see chapter 2.8, ‘Reading from the
interface’), the RQS (request service) bit is returned. It indicates that the
instrument has information to be requested (IEEE definition).

Bit 7: The set OPER (operation status) indicates that the summary message of the
operation status register is set. So there is information inside (IEEE definition).

Each of the 8 bits has a value. If you add the values of all set bits you get the value of the
status byte register:

Application Note 108 Rev.1.1

54/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Bit number 7 6 5 4 3 2 1 0
Bit name OPER MSS / RQS ESB MAV QUES QYE -- --
Bit value 128 64 32 16 8 4 2 1

Example
You request the status byte register via a serial poll and get the number 24 (as decimal
number). If you convert it you get as binary: 24d=00011000b

You see bit 3 (QUES) and bit 4 (MAV) are set.

The status byte register is fed by queues and registers which are explained in the following
chapters.

3.3.2 Queues

There are two queues: the output queue and the error/event queue. Both are constructed as
FIFOs.

If there is any information available (usually after a request command with a ‘?’), it is
stored in the output queue. Then the MAV bit (bit 4 in the status byte register) is set. With
RS232 interface the data of the output queue are now sent automatically. With IEEE488 the
status byte should be checked via serial poll until this bit is set and then a read command
from the instrument should be performed.

In the error/event queue only error messages are stored. They are generated, if you for
example try to read data with a /nquery/ command or a wrong command syntax. If the
message is inside the queue, the QYE bit (bit 2 in the status byte register) is set.
If your program detects that there are any error messages available you should read them
with the proper commands (e.g. SCPI command :SYSTem:ERRor:ALL?). There is space for 16
error messages in the queue. If more messages exist, the 16th entry will change the error
message ‘Queue overflow’.

3.3.3 General construction of a register structure

All so called register are in fact register structures build up of several sub registers with
special functions. This special function exist for most registers. Figure 14 shows the general
set-up as described in IEEE488.2 standard.

Application Note 108 Rev.1.1

55/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

Figure 14: Content of a register structure

3.3.3.1 Condition registers

The condition registers represent the actual state of the instrument. Due to this they are
read only and are also not cleared after being read. If this state was changed in the past,
this cannot be seen.

3.3.3.2 Transition filters

They are not implemented in all registers. The LMG instruments contain transition filters in
the operation status data structure and the questionable status register structure.

Application Note 108 Rev.1.1

56/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

There are two registers which can be changed independently. The transition filters are edge
triggered. So they switch at a 0-to-1 transition (positive transition filter) or 1-to-0
transition (negative transition filter). If they detect ‘their’ edge, they set the corresponding
bit in the event register (see 3.3.3.3, ‘Event register’)

Controlled by the transition filter you can control, which changes in the condition register
are stored in the event register. If you activate both filters, all changes are stored in the
event register. The transition filter can only set bits, not clear them.
If both filters are deactivated, no events will be stored in the event register.

3.3.3.3 Event register

The event register is connected via the transition filter to the condition register. So you can
read, if any condition has ever appeared in the instrument. It can, but does not need to
represent the current state!

The bits in the event register remain set until they are read. It is a sticky register. The
register is read only.

3.3.3.4 Event enable register and summary message

The event enable register is connected via a logical AND function with the event register.
Depending on the mask in the event enable registers it is possible to generate the summary
message only from some defined events via the OR function. The summary message is sent
to another register, e.g. the status byte register.

3.3.3.5 Example

In the negative transition filter only bit 2 is set. In the event enable register bit 2 is also
set, as well as in the condition register. The event register is cleared. The summary message
is assumed to be zero.

If bit 2 in the condition register then changes from 1 to 0, the negative transition filter
recognises this and sets bit 2 in the event register. This is AND-combined with the event
enable register. The final OR function then forces the summary message to be 1.

3.3.4 Main structures

There are three main structures. They are constructed like written above except the standard
event status register.

3.3.4.1 Operation status data structure

This structure indicates, what the current actions of the instrument are. The summary
message is bit 7 (OPER) of the status byte register.

Application Note 108 Rev.1.1

57/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

3.3.4.2 Questionable status register structure

This structure indicates what the current measured values of the instrument are. The
summary message is bit 3 (QUES) of the status byte register.

3.3.4.3 Standard event status register

This structure indicates basic instrument conditions. This register has no condition register
and no transition filter. The states are directly stored in the standard event status register
and cleared after a read.

Bit 0 OPC Operation-Complete-Bit, indicating that all commands before the „*OPC“
command have been executed. This bit will only be set, when the *OPC command has
been received by the LMG.

Bit 1 RQC Request-Control-Bit, never used by the LMGs, because this device will never
become an active controller in the GPIB bus system.

Bit 2 QYE Query-Error-Bit, indicating that an attempt is being made to read data from the
Output Queue when no output is either present or pending, or any data in the output
queue has been lost.

Bit 3 DDE Device-Specific Error-Bit, indicating that the detected error is neither a Command
Error, a Query Error, nor an Execution Error.

Bit 4 EXE Execution-Error-Bit. It indicates that a <Program Data> element following a
header was evaluated by the device as outside of its legal input range, or a valid
program message could not be properly executed.

Bit 5 CME Command-Error-Bit. It is used to indicate errors detected by the parser while
examining the incoming commands.

Bit 6 Unused
Bit 7 PON Power-On-Bit. It indicates an off-to-on transition in the devices power supply.

3.4 FAQ

3.4.1 How to find a command?

In the user manuals of the LMG instruments you find two indices: One for general purposes
and one for the interface commands. Here you find all topics as well as all commands.

3.4.2 How to specify different channels?

See 2.2.4, ‘Channel number (suffix)’

Application Note 108 Rev.1.1

58/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

3.4.3 How to change the analogue outputs?

Here we describe how the analogue outputs of the processing signal interface are
programmed.

To change the full scale of the analogue output you use the commands

SCPI: :SOURce:VOLTage:SCALe:FScale <NRf>
SHORT: AOHI <NRf>

For the zero value you use:

SCPI: :SOURce:VOLTage:SCALe:ZERO <NRf>
SHORT: AOLO <NRf>

With

SCPI: :SOURce:VOLTage:VALue <string>
SHORT: AOIX <string>

You set the value which should be output. The identifier (ID, see 2.2.1, ‘Identification (ID)’)
is passed as a string (see chapter 2.2.8.3, ‘<string>’).

The following example enables the output of the DC voltage of channel 3 on analogue
output 2 (see ‘Example 2: Reading the DC voltage’):

SCPI: :SOURce:VOLTage:VALue2 “Udc:3“
SHORT: AOIX2 “Udc:3“

3.4.4 How to get timestamps with accuracy of one microsecond from the LMG

There are two undocumented interface commands, which are used in the ZES software to get
an accurate timestamp for the end of a measuring cycle. The timestamp is composed of the
commands *TST? 20 and *TST? 21.

Each of these returns a 32-bit value, combined they form a 64-bit integer timestamp in
microseconds. *TST? 20 represents the 32 high-order bits in the 64-bit value. The timestamp
is essentially in Unix-format, but it counts the microseconds (not the seconds) since
1.1.1970. The instrument does not support different timezones, so the timestamp must be
interpreted as UTC regardless of the local time to which the clock is set.

3.4.5 General hints

• Check if the cable is plugged in properly.
Some manufacturers use connectors at their instruments which are not according to the
standard. This can cause contact problems.

Application Note 108 Rev.1.1

59/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

• If you are not sure how to use a command or how the response looks like, use a simple
terminal program (e.g. Hyper Terminal from Windows) to test it via the RS232 interface.

3.4.6 Hardware RS232 communication logging

If you want to watch the communications that really happens on your RS232 interface, a
software logging (writing to a log routine in your read() and write() functions) is not the
best choice, because it shows not the real physical traffic, but only the one the computer
sees at this point. You cannot see if lower level routines add or remove something. But the
instrument is only interested in the data on the physical wires, so it is best to watch these.

With the circuit below you can use a second PC (or another RS232 port on the same PC)
together with a terminal program to log the physical data from the PC (master) or LMG
(slave). Furthermore you can watch both data streams as long as they do not send at the
same time which is not usual for this application. By this you also get the actual sequence
of the communication (which answer came after which request).

Figure 155: Circuit diagram for an RS232 observer

Application Note 108 Rev.1.1

60/60

ZES ZIMMER Electronic Systems GmbH Tel. +49 (0) 6171/6287-50 sales@zes.com www.zes.com
ZES ZIMMER Inc. Ph. + 1 760 550 9371 usa@zes.com

